Enables a conversion between different indices of effect size, such as standardized difference (Cohen's d), (point-biserial) correlation r or (log) odds ratios.
d_to_r(d, n1, n2, ...)r_to_d(r, n1, n2, ...)
oddsratio_to_d(OR, log = FALSE, ...)
logoddsratio_to_d(OR, log = TRUE, ...)
d_to_oddsratio(d, log = FALSE, ...)
oddsratio_to_r(OR, n1, n2, log = FALSE, ...)
logoddsratio_to_r(OR, log = TRUE, ...)
r_to_oddsratio(r, n1, n2, log = FALSE, ...)
Converted index.
Standardized difference value (Cohen's d).
Group sample sizes. If either is missing, groups are assumed to be of equal size.
Arguments passed to or from other methods.
Correlation coefficient r.
Odds ratio values in vector or data frame.
Take in or output the log of the ratio (such as in logistic models).
Conversions between d and OR is done through these formulae:
\(d = \frac{\log(OR)\times\sqrt{3}}{\pi}\)
\(log(OR) = d * \frac{\pi}{\sqrt(3)}\)
Converting between d and r is done through these formulae:
\(d = \frac{\sqrt{h} * r}{\sqrt{1 - r^2}}\)
\(r = \frac{d}{\sqrt{d^2 + h}}\)
Where \(h = \frac{n_1 + n_2 - 2}{n_1} + \frac{n_1 + n_2 - 2}{n_2}\). When groups are of equal size, h reduces to approximately 4. The resulting r is also called the binomial effect size display (BESD; Rosenthal et al., 1982).
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Converting among effect sizes. Introduction to meta-analysis, 45-49.
Jacobs, P., & Viechtbauer, W. (2017). Estimation of the biserial correlation and its sampling variance for use in meta‐analysis. Research synthesis methods, 8(2), 161-180. tools:::Rd_expr_doi("10.1002/jrsm.1218")
Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of magnitude of experimental effect. Journal of educational psychology, 74(2), 166.
Sánchez-Meca, J., Marín-Martínez, F., & Chacón-Moscoso, S. (2003). Effect-size indices for dichotomized outcomes in meta-analysis. Psychological methods, 8(4), 448.
cohens_d()
Other convert between effect sizes:
diff_to_cles
,
eta2_to_f2()
,
odds_to_probs()
,
oddsratio_to_riskratio()
r_to_d(0.5)
d_to_oddsratio(1.154701)
oddsratio_to_r(8.120534)
d_to_r(1)
r_to_oddsratio(0.4472136, log = TRUE)
oddsratio_to_d(1.813799, log = TRUE)
Run the code above in your browser using DataLab