## t Tests
res <- t.test(1:10, y = c(7:20), var.equal = TRUE)
t_to_d(t = res$statistic, res$parameter)
t_to_r(t = res$statistic, res$parameter)
t_to_r(t = res$statistic, res$parameter, alternative = "less")
res <- with(sleep, t.test(extra[group == 1], extra[group == 2], paired = TRUE))
t_to_d(t = res$statistic, res$parameter, paired = TRUE)
t_to_r(t = res$statistic, res$parameter)
t_to_r(t = res$statistic, res$parameter, alternative = "greater")
if (FALSE) { # require(correlation)
## Linear Regression
model <- lm(rating ~ complaints + critical, data = attitude)
(param_tab <- parameters::model_parameters(model))
(rs <- t_to_r(param_tab$t[2:3], param_tab$df_error[2:3]))
# How does this compare to actual partial correlations?
correlation::correlation(attitude,
select = "rating",
select2 = c("complaints", "critical"),
partial = TRUE
)
}
Run the code above in your browser using DataLab