# NOT RUN {
# TOY DATA EXAMPLE
# }
# NOT RUN {
canda <- c(.1, .09, .85, .9, .92)
candb <- 1 - canda
white <- c(.8, .9, .10, .08, .11)
black <- 1 - white
total <- c(30, 80, 70, 20, 29)
toy <- data.frame(canda, candb, white, black, total)
# CREATE VECTORS
cands <- c("canda")
race_group <- c("~ black") # only use one group for example
table_names <- c("EI: PCT Black", "EI: PCT White")
# RUN ei_est_gen()
# KEEP DATA TO JUST ONE ROW FOR EXAMPLE (time) ONLY!
ei_est_gen(cands, race_group, "total",
data = toy[c(1, 3, 5), ], table_names = table_names, sample = 100
)
# WARNING -- May take a little while to execute
# Load Package Data
data(corona)
# Create Character Vectors
cands <- c("pct_husted", "pct_spiegel", "pct_ruth", "pct_button", "pct_montanez", "pct_fox")
race_group3 <- c("~ pct_hisp", "~ pct_asian", "~ pct_white")
table_names <- c("EI: Pct Hisp", "EI: Pct Asian", "EI: Pct White")
# Run ei_est_gen function
results <- ei_est_gen(
cand_vector = cands, race_group = race_group3,
total = "totvote", data = corona, table_names = table_names
)
results
# Run ei_est_gen function; Exporting betas into data frame
results_w_betas <- ei_est_gen(
cand_vector = cands, race_group = race_group3,
total = "totvote", data = corona, table_names = table_names, beta_yes = TRUE
)
res1 <- results_w_betas[[1]] # table of mean estimates
res1
res2 <- results_w_betas[[2]] # betas of estimates for each precinct
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab