# NOT RUN {
# Toy data example
cand_a <- c(.1, .09, .85, .9, .92)
cand_b <- 1 - cand_a
white <- c(.8, .9, .10, .08, .11)
black <- 1 - white
total <- c(30, 80, 70, 20, 29)
toy <- data.frame(cand_a, cand_b, white, black, total)
# Create vectors for iterative EI function
cands <- c("cand_a")
race_group <- c("~ black")
table_names <- c("EI: PCT Black", "EI: PCT White")
# Run iterative EI using only row for simplicity
results <- ei_est_gen(
cands,
race_group,
"total",
data = toy[c(1, 3, 5), ],
table_names = table_names, sample = 100
)
# Generate formula for passage to ei.reg.bayes() function
form <- formula(cbind(cand_a, cand_b) ~ cbind(black, white))
# Run Bayesian model
suppressWarnings(
ei_bayes <- ei.reg.bayes(form, data = toy, sample = 100, truncate = TRUE)
)
# Produce Table
ei_reg_bayes_conf_int(ei_bayes)
# An example using real election. Warning: this example takes a while to run.
# Load corona data
data(corona)
# Generate character vectors
cands <- c(
"pct_husted",
"pct_spiegel",
"pct_ruth",
"pct_button",
"pct_montanez",
"pct_fox"
)
race_group3 <- c("~ pct_hisp", "~ pct_asian", "~ pct_white")
table_names <- c("EI: Pct Lat", "EI: Pct Asian", "EI: Pct White")
# Run EI iterative Fitting
results <- ei_est_gen(
cand_vector = cands, race_group = race_group3,
total = "totvote", data = corona, table_names = table_names
)
# EI: RxC model
# Generate formula
form <- formula(cbind(
pct_husted,
pct_spiegel,
pct_ruth,
pct_button,
pct_montanez,
pct_fox
)
~ cbind(pct_hisp, pct_asian, pct_white))
suppressWarnings(
ei_bayes <- ei.reg.bayes(
form,
data = corona,
sample = 10000,
truncate = TRUE
)
)
# Produce Table
ei_reg_bayes_conf_int(ei_bayes)
# }
Run the code above in your browser using DataLab