eiCompare (version 3.0.0)

md_bayes_draw_lambda: MD Bayes Draw Lambda

Description

Tunes and estimates MD Bayes algorithm (ei.MD.bayes). Returns a data frame of lambda posterior distribution draws. Similar to md_bayes_draw, but used primarily for assessing posterior distribution tests.

Usage

md_bayes_draw_lambda(
  dat,
  race_vote_split,
  form,
  ntunes = 10,
  totaldraws = 1e+05,
  seed = 12345,
  sample = 1e+05,
  thin = 100,
  burnin = 1e+05,
  ret.mcmc = TRUE
)

Arguments

dat

data.frame() object of just raw candidate vote and raw population counts. Put vote results in first set of columns, put population counts next

race_vote_split

Numeric vector of length 2 indicating where vote column ends (e.g., 3), and population counts begin (e.g., 4): c(3,4)

form

Formula object, e.g.: cbind(V1, V2, novote) ~ cbind(VtdAVap_cor, VtdBVap_cor, VtdHVap_cor, VtdOVap_cor)

ntunes

Numeric; how much to tune tuneMD. Default = 10

totaldraws

Numeric; How many total draws from MD. Default = 100000

seed

Numeric. Default = 12345

sample

Numeric. Default = 100000

thin

Numeric. Default = 10

burnin

Numeric. Default = 100000

ret.mcmc

Logical. Default = TRUE

Value

Posterior distribution of lambdas. This is often used for assessing RPB in elections with a small number of precincts.

References

eiPack, King et. al. (http://gking.harvard.edu/eiR)

Examples

Run this code
# NOT RUN {
# }
# NOT RUN {
# TOY DATA EXAMPLE
canda <- c(10, 8, 10, 4, 8)
candb <- 20 - canda
white <- c(15, 12, 18, 6, 10)
black <- 20 - white
toy <- data.frame(canda, candb, white, black)

# Generate formula for passage to ei.reg.bayes() function
form <- formula(cbind(canda, candb) ~ cbind(black, white))
# Then excute md_bayes_draw(); not run here due to time
# md_bayes_draw_lambda(toy, c(2,3), form )
# }

Run the code above in your browser using DataLab