
runMBayes(convList, whichPriori = "gamma", prioriPars = list(shape = 4, rate = 2), startValsAlpha = NULL, startValsBeta = NULL, betaVars = NULL, alphaVars = NULL, sample, burnin = 0, thinning = 1, verbose = 1, retBeta = FALSE, seed = NULL)
convertEiData
-function."gamma"
or "expo"
(see Details)c(rows,columns)
giving the starting values for
alpha. If NULL
random numbers of rdirichlet with
chosen hyperpriori will be chosen.c(rows,columns,districts)
giving the starting
values of beta If NULL
random multinomial numbers
will be chosen.+
sample *
thinningdefault=0
default=1
(rows,
columns-1, districts)
giving variance of proposal
density for $\beta$-values(rows,
columns)
giving variance of proposal density for
$\alpha$-values.TRUE
if estimated
$\beta$-parameters should be returned. With large
number of precincts there can be problems with memoryNULL
. Can be given the
"seed"
-attribute of an eiwild
-object to
reproduce an eiwild
-objectwhichPriori
-parameter has the options
"gamma"
or "expo"
and corresponding
prioriPars
-parameters in a "list"
: "expo"
and numeric
list-element called
"lam"
corresponding to: $\alpha_{rc} \sim
Exp(\lambda)$ "expo"
and matrix
list-element called "lam"
corresponding to:
$\alpha_{rc} \sim Exp(\lambda_{rc})$ "gamma"
and two numeric
list-element called
"shape"
and "rate"
corresponding to:
$\alpha_{rc} \sim Gamma(\lambda_1, \lambda_2)$ "gamma"
and two matrix
list-element called
"shape"
and "rate"
corresponding to:
$\alpha_{rc} \sim Gamma(\lambda_1^{rc},
\lambda_2^{rc})$
The "seed"
attribute is generated by the
.Random.seed
-function.
convertEiData
,
runMBayes
, mcmc
tuneVars
,
indAggEi
## Not run:
# # loading some fake election data
# data(topleveldat)
# form <- cbind(CSU_2, SPD_2, LINK_2, GRUN_2) ~ cbind(CSU_1, SPD_1, Link_1)
# conv <- convertEiData(form=form, aggr=aggr, indi=indi, IDCols=c("ID","ID"))
# set.seed(1234)
# res <- runMBayes(conv, sample=1000, thinning=2, burnin=100,verbose=100)
#
# ## !!! not an eiwild object !!!
# class(res)
#
# # better to use indAggEi
# set.seed(12345)
# res2 <- indAggEi(form=form, aggr=aggr, indi=indi, IDCols=c("ID","ID"),
# sample=1000, thinning=2, burnin=100,verbose=100)
# class(res2)
# summary(res2)
#
# # with individual alpha-hyperpriori-parameters
# hypMat <- list(shape = matrix(c(30,4,4,4,
# 4,30,4,4,
# 4,4,30,4), nrow=3, ncol=4, byrow=TRUE),
# rate = matrix(c(1,2,2,2,
# 2,1,2,2,
# 2,2,1,2), nrow=3, ncol=4, byrow=TRUE))
# set.seed(12345)
# res2 <- indAggEi(form=form, aggr=aggr, indi=indi, IDCols=c("ID","ID"),
# sample=1000, thinning=2, burnin=100, verbose=100,
# prioriPars=hypMat, whichPriori="gamma")
# ## End(Not run)
Run the code above in your browser using DataLab