Learn R Programming

embryogrowth (version 6.2)

result_mcmc_6p: Result of the mcmc using the nest database

Description

Fit using the nest database

Usage

result_mcmc_6p

Arguments

Format

A list of class mcmcComposite with mcmc result for data(nest) with 6 parameters and Gompertz model of growth

Details

Result of the mcmc using the nest database

References

Girondot, M., & Kaska, Y. (2014). A model to predict the thermal reaction norm for the embryo growth rate from field data. Journal of Thermal Biology, 45, 96-102. doi: 10.1016/j.jtherbio.2014.08.005

Examples

Run this code
## Not run: 
# library(embryogrowth)
# data(nest)
# formated <- FormatNests(nest)
# # The initial parameters value can be:
# # "T12H", "DHA",  "DHH", "Rho25"
# # Or
# # "T12L", "DT", "DHA",  "DHH", "DHL", "Rho25"
# x <- structure(c(115.758929130522, 428.649022170996, 503.687251738993, 
# 12.2621455821612, 306.308841227278, 116.35048615105), .Names = c("DHA", 
# "DHH", "DHL", "DT", "T12L", "Rho25"))
# pfixed <- c(rK=2.093313)
# resultNest_6p <- searchR(parameters=x, fixed.parameters=pfixed, 
# 	temperatures=formated, derivate=dydt.Gompertz, M0=1.7, 
# 	test=c(Mean=39.33, SD=1.92))
# data(resultNest_6p)
# pMCMC <- TRN_MHmcmc_p(resultNest_6p, accept=TRUE)
# # Take care, it can be very long, sometimes several days
# result_mcmc_6p <- GRTRN_MHmcmc(result=resultNest_6p,  
# 	parametersMCMC=pMCMC, n.iter=10000, n.chains = 1, n.adapt = 0,  
# 	thin=1, trace=TRUE)
# data(result_mcmc_6p)
# plot(result_mcmc_6p, parameters="T12L", main="", xlim=c(290, 320), bty="n")
# ## End(Not run)

Run the code above in your browser using DataLab