## Not run:
# library(embryogrowth)
# data(nest)
# formated <- FormatNests(nest)
# # The initial parameters value can be:
# # "T12H", "DHA", "DHH", "Rho25"
# # Or
# # "T12L", "T12H", "DHA", "DHH", "DHL", "Rho25"
# x <- structure(c(118.768297442004, 475.750095909406, 306.243694918151,
# 116.055824800264), .Names = c("DHA", "DHH", "T12H", "Rho25"))
# # pfixed <- c(K=82.33) or rK=82.33/39.33
# pfixed <- c(rK=2.093313)
# resultNest_4p <- searchR(parameters=x, fixed.parameters=pfixed,
# temperatures=formated, derivate=dydt.Gompertz, M0=1.7,
# test=c(Mean=39.33, SD=1.92))
# data(resultNest_4p)
# pMCMC <- TRN_MHmcmc_p(resultNest_4p, accept=TRUE)
# # Take care, it can be very long; several days
# result_mcmc_4p <- GRTRN_MHmcmc(result=resultNest_4p,
# parametersMCMC=pMCMC, n.iter=10000, n.chains = 1,
# n.adapt = 0, thin=1, trace=TRUE)
# data(result_mcmc_4p)
# out <- as.mcmc(result_mcmc_4p)
# # This out can be used with coda package
# # Test for stationarity and length of chain
# require(coda)
# heidel.diag(out)
# raftery.diag(out)
# # plot() can use the direct output of GRTRN_MHmcmc() function.
# plot(result_mcmc_4p, parameters=1, xlim=c(0,550))
# plot(result_mcmc_4p, parameters=3, xlim=c(290,320))
# # summary() permits to get rapidly the standard errors for parameters
# # They are store in the result also.
# se <- result_mcmc_4p$SD
# # the confidence interval is better estimated by:
# apply(out[[1]], 2, quantile, probs=c(0.025, 0.975))
# # The use of the intermediate method is as followed;
# # Here the total mcmc iteration is 10000, but every 1000, intermediate
# # results are saved in file intermediate1000.Rdata:
# result_mcmc_4p <- GRTRN_MHmcmc(result=resultNest_4p,
# parametersMCMC=pMCMC, n.iter=10000, n.chains = 1,
# n.adapt = 0, thin=1, trace=TRUE,
# intermediate=1000, filename="intermediate1000.Rdata")
# # If run has been stopped for any reason, it can be resumed with:
# result_mcmc_4p <- GRTRN_MHmcmc(previous="intermediate1000.Rdata")
# ## End(Not run)
Run the code above in your browser using DataLab