Learn R Programming

embryogrowth (version 6.4)

likelihoodR: Estimate the likelihood of a set of parameters for nest incubation data

Description

Estimate the likelihood of a set of parameters for nest incubation data

Usage

likelihoodR(result = NULL, parameters = NULL, fixed.parameters = NULL, temperatures = NULL, derivate = NULL, test = NULL, M0 = NULL, hessian = FALSE, weight = NULL, parallel = TRUE, echo = TRUE)

Arguments

result
A object obtained after searchR or likelihoodR
parameters
A set of parameters
fixed.parameters
A set of parameters that will not be changed
temperatures
Timeseries of temperatures
derivate
Function used to fit embryo growth: dydt.Gompertz, dydt.exponential or dydt.linear
test
Mean and SD of size of hatchlings
M0
Measure of hatchling size or mass proxi at laying date
hessian
If TRUE, the hessian matrix is estimated and the SE of parameters estimated.
weight
A named vector of the weight for each nest for likelihood estimation
parallel
If true, try to use several cores using parallel computing.
echo
If FALSE, does not display the result.

Value

A result object

Details

likelihoodR estimates the likelihood of a set of parameters for nest incubation data

Examples

Run this code
## Not run: 
# library(embryogrowth)
# data(nest)
# formated <- FormatNests(nest)
# # The initial parameters value can be:
# # "T12H", "DHA",  "DHH", "Rho25"
# # Or
# # "T12L", "DT", "DHA",  "DHH", "DHL", "Rho25"
# # K for Gompertz must be set as fixed parameter or being a constant K  
# # or relative to the hatchling size rK
# x <- structure(c(118.768297442004, 475.750095909406, 306.243694918151, 
# 116.055824800264), .Names = c("DHA", "DHH", "T12H", "Rho25"))
# # pfixed <- c(K=82.33) or rK=82.33/39.33
# pfixed <- c(rK=2.093313)
# # K or rK are not used for dydt.linear or dydt.exponential
# LresultNest_4p <- likelihoodR(parameters=x, fixed.parameters=pfixed,  
# 	temperatures=formated, derivate=dydt.Gompertz, M0=1.7,  
# 	test=c(Mean=39.33, SD=1.92))
# data(resultNest_4p)
# LresultNest_4p <- likelihoodR(result=resultNest_4p)
# ## End(Not run)

Run the code above in your browser using DataLab