# NOT RUN {
library(embryogrowth)
MedIncubation_Cc <- subset(DatabaseTSD, Species=="Caretta caretta" &
RMU=="Mediterranean" & Sexed!=0)
Med_Cc <- with(MedIncubation_Cc, tsd(males=Males, females=Females,
temperatures=Incubation.temperature, par=c(P=29.5, S=-0.01)))
plot(Med_Cc, xlim=c(25, 35))
males <- c(7, 0, 0, 0, 0, 5, 6, 3, 5, 3, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0)
names(males) <- rev(rev(names(resultNest_4p_SSM4p$data))[-(1:2)])
sexed <- rep(10, length(males))
names(sexed) <- rev(rev(names(resultNest_4p_SSM4p$data))[-(1:2)])
Initial_STRN <- resultNest_4p_SSM4p$par[c("DHA", "DHH", "T12H")]
Initial_STRN <- structure(c(3460.21379985491, 588.062535503578, 2347.70617453574),
.Names = c("DHA", "DHH", "T12H"))
fp <- c(Rho25=100)
fitSTRN <- STRN(Initial_STRN, EmbryoGrowthTRN=resultNest_4p_SSM4p, tsd=Med_Cc,
Sexed=sexed, Males=males,
fixed.parameters=fp,
Temperatures="TSP.GrowthWeighted.STRNWeighted.temperature.mean")
pMCMC <- TRN_MHmcmc_p(fitSTRN, accept=TRUE)
pMCMC[, "Density"] <- "dunif"
pMCMC[, "Prior2"] <- pMCMC[, "Max"]<- 10000
pMCMC[, "Prior1"] <- pMCMC[, "Min"] <- 1
outMCMC <- STRN_MHmcmc(result = fitSTRN, n.iter = 50000, parametersMCMC = pMCMC,
n.chains = 1, n.adapt = 0, thin = 1, trace = TRUE,
dataSTRN = list(EmbryoGrowthTRN = resultNest_4p_SSM4p,
Temperatures = "TSP.STRNWeighted.temperature.mean",
fixed.parameters=fitSTRN$fixed.parameters,
zero=1E-9,
tsd=Med_Cc,
Sexed=sexed, Males=males),
adaptive = TRUE, adaptive.lag = 500,
intermediate = 1000,
filename = "intermediate_mcmcSTRN.Rdata")
plot(outMCMC, parameters=1)
plot(outMCMC, parameters=2)
plot(outMCMC, parameters=3)
1-rejectionRate(as.mcmc(x = outMCMC))
# Take care,you computer will be 100% busy as all cores will be used intensively
outMCMC_parallel <- parallel::mclapply(1:detectCores(), function(x) {
STRN_MHmcmc(result = fitSTRN, n.iter = 50000/detectCores(),
parametersMCMC = pMCMC,
n.chains = 1, n.adapt = 0, thin = 1, trace = TRUE,
dataSTRN = list(EmbryoGrowthTRN = resultNest_4p_SSM4p,
Temperatures = "TSP.STRNWeighted.temperature.mean",
fixed.parameters=fitSTRN$fixed.parameters,
tsd=Med_Cc, zero=1E-9,
Sexed=sexed, Males=males),
parallel=FALSE,
adaptive = TRUE, adaptive.lag = 500,
intermediate = NULL)
})
outMCMC_parallel_merge <- outMCMC_parallel[[1]]
for (i in 2:length(outMCMC_parallel)) {
outMCMC_parallel_merge <- merge(outMCMC_parallel_merge, outMCMC_parallel[[i]])
}
plot(outMCMC_parallel_merge, parameters=1)
plot(outMCMC_parallel_merge, parameters=2)
plot(outMCMC_parallel_merge, parameters=3)
plotR(parameters = fitSTRN$par, fixed.parameters=fitSTRN$fixed.parameters,
curves = "MCMC quantiles", ylim=c(0, 5), resultmcmc = outMCMC_parallel_merge,
ylab="Relative contribution to sexualisation", xlim=c(28, 29))
# }
Run the code above in your browser using DataLab