Last chance! 50% off unlimited learning
Sale ends in
Calculate Bayesian credible intervals based on various types of information about the posterior distribution
tcredint(dist, parlist, ranges, level = 0.95, eps = 1e-05,verbose=FALSE)
ncredint(pvec,npost,level=0.95,tol=0.01,verbose=FALSE)
A numeric vector giving the credible interval.
If verbose=FALSE
, gives just lower and upper bounds;
if verbose=TRUE
, also gives
information on the probability cutoff and
realized area of the credible interval
character string giving the name of a distribution for which "d", "q", and "p" function exist, e.g. "beta"
list of parameters to pass to distribution functions
lower, middle, and upper values to bracket lower and upper boundaries of the credible interval
confidence level
if ranges
is missing, set lower and
upper brackets to the eps
and 1-eps
quantiles
of the distribution
tolerance on credible interval
if TRUE, return detailed information on the probability cutoff and realized area of the credible interval; if FALSE, just lower and upper bounds of the credible region
numeric vector of parameter values
numeric vector of posterior density values corresponding
to pvec
Ben Bolker
tcredint
gives credible intervals for a theoretical
posterior density with defined density, cumulative density, and
quantile functions; ncredint
gives credible intervals
for a numerical posterior density.
tcredint("beta",list(shape1=5,shape2=10),verbose=TRUE)
pvec = seq(0,1,length=100)
postvec = dbeta(pvec,shape1=5,shape2=10)
ncredint(pvec,postvec,verbose=TRUE)
set.seed(1001)
Run the code above in your browser using DataLab