mtcars.lm <- lm(mpg ~ factor(vs)+factor(cyl)*factor(gear), data = mtcars)
(v.c.g <- ref_grid(mtcars.lm))
(v.cg <- comb_facs(v.c.g, c("cyl", "gear")))
# One use is obtaining a single test for the joint contributions of two factors:
joint_tests(v.c.g)
joint_tests(v.cg)
# undo the 'comb_facs' operation:
split_fac(v.cg, "cyl.gear", list(cyl = c(4, 6, 8), gear = 3:5))
IS.glm <- glm(count ~ spray, data = InsectSprays, family = poisson)
IS.emm <- emmeans(IS.glm, "spray")
IS.new <- split_fac(IS.emm, "spray", list(A = 1:2, B = c("low", "med", "hi")))
str(IS.new)
fiber.lm <- lm(strength ~ diameter + machine, data = fiber)
( frg <- ref_grid(fiber.lm) )
# Suppose the machines are two different brands
brands <- factor(c("FiberPro", "FiberPro", "Acme"), levels = c("FiberPro", "Acme"))
( gfrg <- add_grouping(frg, "brand", "machine", brands) )
emmeans(gfrg, "machine")
emmeans(gfrg, "brand")
### More than one reference factor
warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks)
gwrg <- add_grouping(ref_grid(warp.lm),
"prod", c("tension", "wool"), c(2, 1, 1, 1, 2, 1))
# level combinations: LA MA HA LB MB HB
emmeans(gwrg, ~ wool * tension) # some NAs due to impossible combinations
emmeans(gwrg, "prod")
## Using 'add_submodels' to compare adjusted and unadjusted means
fibint.lm <- lm(strength ~ machine * diameter, data = fiber)
fibsub <- add_submodels(emmeans(fibint.lm, "machine"),
full = ~ ., additive = ~ . - machine:diameter, unadj = ~ machine)
emmeans(fibsub, pairwise ~ model | machine, adjust = "none")
# Permuting factor levels...
str(v.c.g)
str(permute_levels(v.c.g, "cyl", c(2,3,1)))
Run the code above in your browser using DataLab