# NOT RUN {
p <- 3 # Number of states
K <- 2 # Dimensionality of the latent space
p_init <- rep(1 / K, K)
p_trans <- array(runif((p - 1) * K * K), c(p - 1, K, K))
# Normalizing the transition probabilities
for (j in seq_len(p - 1)) {
p_trans[j, , ] <- p_trans[j, , ] / (matrix(rowSums(p_trans[j, , ]), ncol = 1) %*% rep(1, K))
}
p_emit <- array(stats::runif(p * 3 * K), c(p, 3, K))
# Normalizing the emission probabilities
for (j in seq_len(p)) {
p_emit[j, , ] <- p_emit[j, , ] / (matrix(rep(1, 3), ncol = 1) %*% colSums(p_emit[j, , ]))
}
hmm <- list(pInit = p_init, Q = p_trans, pEmit = p_emit)
n <- 2
X <- matrix((runif(n * p, min = 0, max = 1) < 0.4) +
(runif(n * p, min = 0, max = 1) < 0.4),
nrow = 2, dimnames = list(NULL, paste0("SNP_", seq_len(p))))
cond_prob(X, "SNP_2", hmm, ncores = 1, binary = TRUE)
# }
Run the code above in your browser using DataLab