# NOT RUN {
## Data from Rothman and Keller (1972) evaluating the effect of joint exposure
## to alcohol and tabacco on risk of cancer of the mouth and pharynx (cited in
## Hosmer and Lemeshow, 1992):
can <- c(rep(1, times = 231), rep(0, times = 178), rep(1, times = 11),
rep(0, times = 38))
smk <- c(rep(1, times = 225), rep(0, times = 6), rep(1, times = 166),
rep(0, times = 12), rep(1, times = 8), rep(0, times = 3), rep(1, times = 18),
rep(0, times = 20))
alc <- c(rep(1, times = 409), rep(0, times = 49))
dat <- data.frame(alc, smk, can)
## Table 2 of Hosmer and Lemeshow (1992):
dat.glm01 <- glm(can ~ alc + smk + alc:smk, family = binomial, data = dat)
summary(dat.glm01)
## What is the measure of effect modification on the additive scale?
epi.interaction(model = dat.glm01, param = "product", coef = c(2,3,4),
type = "RERI", conf.level = 0.95)
## Measure of interaction on the additive scale: RERI 3.73
## (95% CI -1.84 -- 9.32), page 453 of Hosmer and Lemeshow (1992).
## Rothman defines an alternative coding scheme to be employed for
## parameterising an interaction term. Using this approach, instead of using
## two risk factors and one product term to represent the interaction (as
## above) the risk factors are combined into one variable with (in this case)
## four levels:
## a.neg b.neg: 0 0 0
## a.pos b.neg: 1 0 0
## a.neg b.pos: 0 1 0
## a.pos b.pos: 0 0 1
dat$d <- rep(NA, times = nrow(dat))
dat$d[dat$alc == 0 & dat$smk == 0] <- 0
dat$d[dat$alc == 1 & dat$smk == 0] <- 1
dat$d[dat$alc == 0 & dat$smk == 1] <- 2
dat$d[dat$alc == 1 & dat$smk == 1] <- 3
dat$d <- factor(dat$d)
## Table 3 of Hosmer and Lemeshow (1992):
dat.glm02 <- glm(can ~ d, family = binomial, data = dat)
summary(dat.glm02)
## What is the measure of effect modification on the additive scale?
epi.interaction(model = dat.glm02, param = "dummy", coef = c(2,3,4),
type = "RERI", conf.level = 0.95)
## Measure of interaction on the additive scale: RERI 3.73
## (95% CI -1.84 -- 9.32), page 455 of Hosmer and Lemeshow (1992).
## What is the measure of effect modification on the multiplicative scale?
## See VanderWeele and Knol (2014) page 36 and Knol and Vanderweele (2012)
## for details.
beta1 <- as.numeric(dat.glm01$coefficients[2])
beta2 <- as.numeric(dat.glm01$coefficients[3])
beta3 <- as.numeric(dat.glm01$coefficients[4])
exp(beta3) / (exp(beta1) * exp(beta2))
## Measure of interaction on the multiplicative scale: 0.093.
# }
Run the code above in your browser using DataLab