Learn R Programming

epiR (version 2.0.68)

epi.ssequc: Sample size for a parallel equivalence or equality trial, continuous outcome

Description

Sample size for a parallel equivalence or equality trial, continuous outcome.

Usage

epi.ssequc(treat, control, sigma, delta, n, power, r = 1, type = "equivalence", 
   nfractional = FALSE, alpha)

Value

A list containing the following:

n.total

the total number of study subjects required.

n.treat

the required number of study subject in the treatment group.

n.control

the required number of study subject in the control group.

delta

the equivalence limit, as entered by the user.

power

the specified or calculated study power.

Arguments

treat

the expected mean of the outcome of interest in the treatment group.

control

the expected mean of the outcome of interest in the control group.

sigma

the expected population standard deviation of the outcome of interest.

delta

the equivalence limit, expressed as the absolute change in the outcome of interest that represents a clinically meaningful difference. For an equivalence trial the value entered for delta must be greater than zero.

n

scalar, the total number of study subjects in the trial.

power

scalar, the required study power.

r

scalar, the number in the treatment group divided by the number in the control group.

type

a character string indicating the type of analysis to be run. Options are equality and equivalence. If type = equality is selected argument delta is ignored.

nfractional

logical, return fractional sample size.

alpha

scalar, defining the desired alpha level.

References

Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, Leonard J, Fields BT, Bradshaw M, Haywood H, McGee Z, Cate TR, Cobbs CG, Warner JF and Alling DW (1979). A comparison of amphotericin B alone and combined flucytosine in the treatment of cryptococcal meningitis. New England Journal of Medicine 301: 126 - 131.

Chow S, Shao J, Wang H (2008). Sample Size Calculations in Clinical Research. Chapman & Hall/CRC Biostatistics Series, pp. 91.

Ewald B (2013). Making sense of equivalence and non-inferiority trials. Australian Prescriber 36: 170 - 173.

Julious SA (2004). Sample sizes for clinical trials with normal data. Statistics in Medicine 23: 1921 - 1986.

Julious SA (2009). Estimating Samples Sizes in Clinical Trials. CRC, New York.

Machin D, Campbell MJ, Tan SB, Tan SH (2009). Sample Size Tables for Clinical Studies. Wiley Blackwell, New York.

Wang B, Wang H, Tu X, Feng C (2017). Comparisons of superiority, non-inferiority, and equivalence trials. Shanghai Archives of Psychiatry 29, 385 - 388. DOI: 10.11919/j.issn.1002-0829.217163.

Examples

Run this code
## EXAMPLE 1 (from Machin, Campbell, Tan and Tan 2009 p. 113):
## It is anticipated that patients on a particular drug have a mean diastolic 
## blood pressure of 96 mmHg, as against 94 mmHg on an alternative. It is also 
## anticipated that the standard deviation of diastolic BP is approximately 
## 8 mmHg. If one wishes to confirm that the difference is likely to be less 
## than 5 mmHg, that is, one wishes to show equivalence, how many patients 
## are needed to be enrolled in the trial? Assume 80% power and 
## 95% significance.

epi.ssequc(treat = 94, control = 96, sigma = 8, delta = 5, n = NA, 
   power = 0.80, r = 1, type = "equivalence", nfractional = FALSE, 
   alpha = 0.05)

## A total of 244 subjects need to be enrolled in the trial, 122 in the 
## treatment group and 122 in the control group.


## EXAMPLE 2 (from Chow S, Shao J, Wang H 2008, p. 64):
## A pharmaceutical company is interested in conducting a clinical trial
## to compare two cholesterol lowering agents for treatment of patients with
## congestive heart disease using a parallel design. The primary efficacy 
## parameter is the LDL. In what follows, we will consider the situation
## where the intended trial is for testing equivalence of mean responses 
## in LDL. Assume that 80% power is required at a 5% level of significance.

## In this example, we assume a 5 unit (i.e., delta = 5) change of LDL is 
## considered of clinically meaningful difference. Assume the standard 
## of LDL is 10 units and the LDL concentration in the treatment group is 20 
## units and the LDL concentration in the control group is 21 units.

epi.ssequc(treat = 20, control = 21, sigma = 10, delta = 5, n = NA, 
   power = 0.80, r = 1, type = "equivalence", nfractional = FALSE, 
   alpha = 0.05)

## A total of 216 subjects need to be enrolled in the trial, 108 in the 
## treatment group and 108 in the control group.


## EXAMPLE 2 (cont.):
## Suppose only 150 subjects were enrolled in the trial, 75 in the treatment
## group and 75 in the control group. What is the estimated study power?

epi.ssequc(treat = 20, control = 21, sigma = 10, delta = 5, n = 150, 
   power = NA, r = 1, type = "equivalence", nfractional = FALSE, 
   alpha = 0.05)

## With only 150 subjects enrolled the estimated study power is 0.58.


## EXAMPLE 3:
## A study is to be carried out to determine if the daily weight gain of calves 
## (in kilograms) on two diets differ. The null hypothesis is that there is 
## no difference in daily weight gain. The alternative hypothesis is that 
## daily weight gains for the two groups differ. How many calves need to 
## be enrolled into a study to detect a statistically significant difference
## in daily weight gain for the two groups? Assume daily weight gain for the 
## treatment group is 0.70 kg per day and daily weight gain for the control
## group is 0.65 kg per day and the standard deviation of daily weight gain in
## calves of this age is 0.06. Assume power of 0.80 and alpha of 0.05.

epi.ssequc(treat = 0.70, control = 0.65, sigma = 0.06, delta = NA, n = NA, 
   power = 0.80, r = 1, type = "equality", nfractional = FALSE, 
   alpha = 0.05)

## A total of 48 calves need to be enrolled into the study: 24 in the treatment
## group and 24 in the control group.

Run the code above in your browser using DataLab