Learn R Programming

epiR (version 2.0.78)

epi.ssninfc: Sample size for a non-inferiority trial, continuous outcome

Description

Sample size for a non-inferiority trial, continuous outcome.

Usage

epi.ssninfc(treat, control, sigma, delta, n, power, r = 1, nfractional = FALSE, 
   alpha)

Value

A list containing the following:

n.total

the total number of study subjects required.

n.treat

the required number of study subject in the treatment group.

n.control

the required number of study subject in the control group.

delta

the equivalence limit, as entered by the user.

power

the specified or calculated study power.

Arguments

treat

the expected mean of the outcome of interest in the treatment group.

control

the expected mean of the outcome of interest in the control group.

sigma

the expected population standard deviation of the outcome of interest.

delta

the equivalence limit, expressed as the absolute change in the outcome of interest that represents a clinically meaningful difference. For a non-inferiority trial the value entered for delta must be greater than or equal to zero.

n

scalar, the total number of study subjects in the trial.

power

scalar, the required study power.

r

scalar, the number in the treatment group divided by the number in the control group.

nfractional

logical, return fractional sample size.

alpha

scalar, defining the desired alpha level.

Author

Many thanks to Aniko Szabo (Medical College of Wisconsin, Wisconsin USA) for improvements to the power calculations for this function and suggestions to improve the documentation.

References

Blackwelder WC (1982). Proving the null hypothesis in clinical trials. Controlled Clinical Trials 3: 345 - 353.

Ewald B (2013). Making sense of equivalence and non-inferiority trials. Australian Prescriber 36: 170 - 173.

Julious SA (2004). Sample sizes for clinical trials with normal data. Statistics in Medicine 23: 1921 - 1986.

Julious SA (2009). Estimating Samples Sizes in Clinical Trials. CRC, New York.

Machin D, Campbell MJ, Tan SB, Tan SH (2009). Sample Size Tables for Clinical Studies. Wiley Blackwell, New York.

Scott IA (2009). Non-inferiority trials: determining whether alternative treatments are good enough. Medical Journal of Australia 190: 326 - 330.

Wang B, Wang H, Tu X, Feng C (2017). Comparisons of superiority, non-inferiority, and equivalence trials. Shanghai Archives of Psychiatry 29, 385 - 388. DOI: 10.11919/j.issn.1002-0829.217163.

Zhong B (2009). How to calculate sample size in randomized controlled trial? Journal of Thoracic Disease 1: 51 - 54.

Examples

Run this code
## EXAMPLE 1 (from Chow S, Shao J, Wang H 2008, p. 61 - 62):
## A pharmaceutical company is interested in conducting a clinical trial
## to compare two cholesterol lowering agents for treatment of patients with
## congestive heart disease using a parallel design. The primary efficacy 
## parameter is the LDL. In what follows, we will consider the situation
## where the intended trial is for testing non-inferiority of mean responses 
## in LDL. Assume that 80% power is required at a 5% level of significance.

## In this example we assume a -0.05 unit change in LDL is a clinically 
## meaningful difference. Assume the standard deviation of LDL is 0.10 units 
## and the LDL concentration in the treatment group is 0.20 units and the 
## LDL concentration in the control group is 0.20 units.

epi.ssninfc(treat = 0.20, control = 0.20, sigma = 0.10, delta = 0.05, n = NA, 
   power = 0.80, r = 1, nfractional = FALSE, alpha = 0.05)

## A total of 100 subjects need to be enrolled in the trial, 50 in the 
## treatment group and 50 in the control group.

Run the code above in your browser using DataLab