Learn R Programming

episensr (version 1.3.0)

plot.episensr.probsens: Plot(s) of probabilistic bias analyses

Description

This takes a probsens-family object and produces the distribution plot of chosen bias parameters, as well as distribution of adjusted measures (with confidence interval).

Usage

# S3 method for episensr.probsens
plot(
  x,
  parms = c("rr", "or", "rr_tot", "or_tot", "irr", "irr_tot", "seca", "seexp", "spca",
    "spexp", "or_sel", "prev.exp", "prev.nexp", "risk"),
  ...
)

Arguments

x

An object of class "episensr.probsens" returned from the episensr probsens, probsens.sel, probsens.conf, probsens.irr, probsens.irr.conf functions.

parms

Choice between adjusted relative risk (rr) and odds ratio (or), total error relative risk and odds ratio (rr_tot and or_tot), seca, seexp, spca, or_sel, and spexp, prev.exp, prev.nexp and risk, irr and irr_tot.

...

Other unused arguments.

See Also

probsens, probsens.sel, probsens.conf, probsens.irr, probsens.irr.conf

Examples

Run this code
set.seed(123)
risk <- probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure", reps = 20000,
seca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)))
plot(risk, "rr")

set.seed(123)
odds <- probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure", reps = 20000,
seca.parms = list("beta", c(908, 16)),
seexp.parms = list("beta", c(156, 56)),
spca.parms = list("beta", c(153, 6)),
spexp.parms = list("beta", c(205, 18)),
corr.se = .8,
corr.sp = .8)
plot(odds, "seca")

set.seed(123)
select <- probsens.sel(matrix(c(136, 107, 297, 165),
dimnames = list(c("Melanoma+", "Melanoma-"), c("Mobile+", "Mobile-")),
nrow = 2, byrow = TRUE), reps = 20000,
or.parms = list("triangular", c(.35, 1.1, .43)))
plot(select, "or_sel")

set.seed(123)
conf <- probsens.conf(matrix(c(105, 85, 527, 93),
dimnames = list(c("HIV+", "HIV-"), c("Circ+", "Circ-")), nrow = 2, byrow = TRUE),
reps = 20000,
prev.exp = list("triangular", c(.7, .9, .8)),
prev.nexp = list("trapezoidal", c(.03, .04, .05, .06)),
risk = list("triangular", c(.6, .7, .63)),
corr.p = .8)
plot(conf, "prev.exp")

set.seed(123)
inc1 <- probsens.irr(matrix(c(2, 67232, 58, 10539000),
dimnames = list(c("GBS+", "Person-time"), c("HPV+", "HPV-")), ncol = 2),
reps = 20000,
seca.parms = list("trapezoidal", c(.4, .45, .55, .6)),
spca.parms = list("constant", 1))
plot(inc1, "irr")

set.seed(123)
inc2 <- probsens.irr.conf(matrix(c(77, 10000, 87, 10000),
dimnames = list(c("D+", "Person-time"), c("E+", "E-")), ncol = 2),
reps = 20000,
prev.exp = list("trapezoidal", c(.01, .2, .3, .51)),
prev.nexp = list("trapezoidal", c(.09, .27, .35, .59)),
risk = list("trapezoidal", c(2, 2.5, 3.5, 4.5)),
corr.p = .8)
plot(inc2, "risk")

Run the code above in your browser using DataLab