Learn R Programming

episensr (version 1.3.0)

probsens: Probabilistic sensitivity analysis.

Description

Probabilistic sensitivity analysis to correct for exposure misclassification or outcome misclassification and random error. Non-differential misclassification is assumed when only the two bias parameters seca.parms and spca.parms are provided. Adding the 2 parameters seexp.parms and spexp.parms (i.e. providing the 4 bias parameters) evaluates a differential misclassification.

Usage

probsens(
  case,
  exposed,
  type = c("exposure", "outcome"),
  reps = 1000,
  seca.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
    "logit-logistic", "logit-normal", "beta"), parms = NULL),
  seexp.parms = NULL,
  spca.parms = list(dist = c("constant", "uniform", "triangular", "trapezoidal",
    "logit-logistic", "logit-normal", "beta"), parms = NULL),
  spexp.parms = NULL,
  corr.se = NULL,
  corr.sp = NULL,
  discard = TRUE,
  alpha = 0.05
)

Value

A list with elements:

obs.data

The analyzed 2 x 2 table from the observed data.

obs.measures

A table of observed relative risk and odds ratio with confidence intervals.

adj.measures

A table of corrected relative risks and odds ratios.

sim.df

Data frame of random parameters and computed values.

reps

Number of replications.

Arguments

case

Outcome variable. If a variable, this variable is tabulated against.

exposed

Exposure variable.

type

Choice of correction for exposure or outcome misclassification.

reps

Number of replications to run.

seca.parms

List defining:

  1. The sensitivity of exposure classification among those with the outcome (when type = "exposure"), or

  2. The sensitivity of outcome classification among those with the exposure (when type = "outcome").

The first argument provides the probability distribution function (constant, uniform, triangular, trapezoidal, logit-logistic, logit-normal, or beta) and the second its parameters as a vector. Logit-logistic and logit-normal distributions can be shifted by providing lower and upper bounds. Avoid providing these values if a non-shifted distribution is desired.

  1. constant: constant value,

  2. uniform: min, max,

  3. triangular: lower limit, upper limit, mode,

  4. trapezoidal: min, lower mode, upper mode, max,

  5. logit-logistic: location, scale, lower bound shift, upper bound shift,

  6. logit-normal: location, scale, lower bound shift, upper bound shift.

  7. beta: alpha, beta.

seexp.parms

List defining:

  1. The sensitivity of exposure classification among those without the outcome (when type = "exposure"), or

  2. The sensitivity of outcome classification among those without the exposure (when type = "outcome").

spca.parms

List as above for seca.parms but for specificity.

spexp.parms

List as above for seexp.parms but for specificity.

corr.se

Correlation between case and non-case sensitivities.

corr.sp

Correlation between case and non-case specificities.

discard

A logical scalar. In case of negative adjusted count, should the draws be discarded? If set to FALSE, negative counts are set to zero.

alpha

Significance level.

References

Lash, T.L., Fox, M.P, Fink, A.K., 2009 Applying Quantitative Bias Analysis to Epidemiologic Data, pp.117--150, Springer.

Examples

Run this code
# The data for this example come from:
# Greenland S., Salvan A., Wegman D.H., Hallock M.F., Smith T.J.
# A case-control study of cancer mortality at a transformer-assembly facility.
# Int Arch Occup Environ Health 1994; 66(1):49-54.
set.seed(123)
# Exposure misclassification, non-differential
probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)))

# Exposure misclassification, differential
probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
seexp.parms = list("trapezoidal", c(.7, .8, .9, .95)),
spca.parms = list("trapezoidal", c(.75, .85, .95, 1)),
spexp.parms = list("trapezoidal", c(.7, .8, .9, .95)),
corr.se = .8,
corr.sp = .8)

probsens(matrix(c(45, 94, 257, 945),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 20000,
seca.parms = list("beta", c(908, 16)),
seexp.parms = list("beta", c(156, 56)),
spca.parms = list("beta", c(153, 6)),
spexp.parms = list("beta", c(205, 18)),
corr.se = .8,
corr.sp = .8)

probsens(matrix(c(338, 490, 17984, 32024),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "exposure",
reps = 1000,
seca.parms = list("trapezoidal", c(.8, .9, .9, 1)),
spca.parms = list("trapezoidal", c(.8, .9, .9, 1)))

# Disease misclassification
probsens(matrix(c(173, 602, 134, 663),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "outcome",
reps = 20000,
seca.parms = list("uniform", c(.8, 1)),
spca.parms = list("uniform", c(.8, 1)))

probsens(matrix(c(338, 490, 17984, 32024),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "outcome",
reps = 20000,
seca.parms = list("uniform", c(.2, .6)),
seexp.parms = list("uniform", c(.1, .5)),
spca.parms = list("uniform", c(.99, 1)),
spexp.parms = list("uniform", c(.99, 1)),
corr.se = .8,
corr.sp = .8)

probsens(matrix(c(173, 602, 134, 663),
dimnames = list(c("BC+", "BC-"), c("Smoke+", "Smoke-")), nrow = 2, byrow = TRUE),
type = "outcome",
reps = 20000,
seca.parms = list("beta", c(100, 5)),
seexp.parms = list("beta", c(110, 10)),
spca.parms = list("beta", c(120, 15)),
spexp.parms = list("beta", c(130, 30)),
corr.se = .8,
corr.sp = .8)

Run the code above in your browser using DataLab