Learn R Programming

equSA (version 1.2.1)

Mulpval: Multiple hypothesis tests for \(p\) values

Description

Conduct multiple hypothesis tests from \(p\) values.

Usage

Mulpval(pvalue, ALPHA2=0.05,GRID=2,iteration=100)

Arguments

pvalue

A vector of \(p\) values.

ALPHA2

The significance level of screening, default of 0.05.

GRID

The number of components for the \(z\)-scores. The default value is 2.

iteration

Number of iterations for screening. The default value is 100.

Value

qqqscore

The threshold of \(p\) value which indicates that \(p\) values are not larger than the threshold are considered significance and larger otherwise.

Details

This is the function that conduct multiple hypothesis test for \(p\) values.

References

Liang, F. and Zhang, J. (2008) Estimating FDR under general dependence using stochastic approximation. Biometrika, 95(4), 961-977.

Examples

Run this code
# NOT RUN {
library(equSA)
pvalue <- c(runif(20,0,0.001),runif(200,0,1))
Mulpval(pvalue,ALPHA2=0.05)
# }

Run the code above in your browser using DataLab