# conversion using direct coefficients
# three-parameter logistic model
# direct equating coefficients between forms 1 and 2 using the Stocking-Lord method
data(est3pl)
test <- paste("test", 1:5, sep = "")
mod3pl <- modIRT(coef = est3pl$coef, var = est3pl$var, names = test, display = FALSE)
l12 <- direc(mod1 = mod3pl[1], mod2 = mod3pl[2], method = "Stocking-Lord")
convert(A = l12$A, B = l12$B, coef = coef(mod3pl$test1))
# the conversion of item parameters is obtained also using
itm(l12)
# conversion using bisector coefficients
# two-parameter logistic model
# direct equating coefficients using the "Haebara" method
data(est2pl)
test <- paste("test", 1:5, sep = "")
mod2pl <- modIRT(coef = est2pl$coef, var = est2pl$var, names = test, display = FALSE)
direclist2pl <- alldirec(mods = mod2pl, method = "Haebara")
# compute chain equating coefficients for path 1,2,3,4
pth1 <- paste("test", 1:4, sep = "")
chainec1 <- chainec(direclist = direclist2pl, pths = pth1)
# compute chain equating coefficients for path 1,5,4
pth2 <- c(paste("test", c(1,5,4), sep = ""))
chainec2 <- chainec(direclist = direclist2pl, pths = pth2)
# create a list of objects of class ceqc
ecall <- c(chainec1, chainec2)
# compute bisector and weighted bisector coefficients
allec <- bisectorec(ecall = ecall, weighted = TRUE, unweighted = TRUE)
summary(allec)
eqc14<-eqc(allec, link = "test1.test4", path = "bisector")
convert(A = eqc14$A, B = eqc14$B, coef = coef(mod2pl$test1), person.par = seq(-3, 3, 0.5))
Run the code above in your browser using DataLab