Fits peaks-over-threshold model of a sample.
fitpot(data, threshold=NA, nextremes=NA, evi=NA)
a numeric vector.
a threshold value (either this or nextremes
must
be given but not both).
the number of upper extremes to be used (either
this or threshold
must be given but not both).
extreme value index. In particular, the shape parammeter of a generalized Pareto distribution.
A data.frame
with the following columns:
evi extreme value index. In particular, the shape parammeter of a generalized Pareto distribution.
psi the scale parameter of a generalized Pareto distribution.
threshold a threshold value where peaks-over-threshold is applied.
prob proportion of size of data corresponding to the upper extremes modelled with generalized pareto distribution.
del Castillo, J. and Padilla, M. (2016). Modeling extreme values by the residual coefficient of variation. SORT Statist. Oper. Res. Trans. 40(2), 303-320.
del Castillo, J. and Serra, I. (2015). Likelihood inference for Generalized Pareto Distribution. Computational Statistics and Data Analysis, 83, 116-128.
del Castillo, J., Daoudi, J. and Lockhart, R. (2014). Methods to Distinguish Between Polynomial and Exponential Tails. Scandinavian Journal of Statistics, 41, 382-393.
ercv-package
, cievi
,
ccdfplot
, cvevi
, cvplot
, evicv
,
ppot
, qpot
, tdata
, thrselect
,
Tm
# NOT RUN {
data("nidd.thresh", package = "evir")
fitpot(nidd.thresh)
# }
Run the code above in your browser using DataLab