Learn R Programming

ergm (version 3.11.0)

approx.hotelling.diff.test: Approximate Hotelling T^2-Test for One or Two Population Means

Description

A multivariate hypothesis test for a single population mean or a difference between them. This version attempts to adjust for multivariate autocorrelation in the samples.

Usage

approx.hotelling.diff.test(
  x,
  y = NULL,
  mu0 = 0,
  assume.indep = FALSE,
  var.equal = FALSE,
  ...
)

Arguments

x

a numeric matrix of data values with cases in rows and variables in columns.

y

an optinal matrix of data values with cases in rows and variables in columns for a 2-sample test.

mu0

an optional numeric vector: for a 1-sample test, the poulation mean under the null hypothesis; and for a 2-sample test, the difference between population means under the null hypothesis; defaults to a vector of 0s.

assume.indep

if TRUE, performs an ordinary Hotelling's test without attempting to account for autocorrelation.

var.equal

for a 2-sample test, perform the pooled test: assume population variance-covariance matrices of the two variables are equal.

...

additional arguments, passed on to spectrum0.mvar(), etc.; in particular, order.max= can be used to limit the order of the AR model used to estimate the effective sample size.

Value

An object of class htest with the following information:

statistic

The \(T^2\) statistic.

parameter

Degrees of freedom.

p.value

P-value.

method

Method specifics.

null.value

Null hypothesis mean or mean difference.

alternative

Always "two.sided".

estimate

Sample difference.

covariance

Estimated variance-covariance matrix of the estimate of the difference.

covariance.x

Estimated variance-covariance matrix of the estimate of the mean of x.

covariance.y

Estimated variance-covariance matrix of the estimate of the mean of y.

It has a print method print.htest().

References

Hotelling, H. (1947). Multivariate Quality Control. In C. Eisenhart, M. W. Hastay, and W. A. Wallis, eds. Techniques of Statistical Analysis. New York: McGraw-Hill.

See Also

t.test()