Estimate the variance-covariance matrix of the joint (VaR, ES) estimator either using the asymptotic formulas or using the bootstrap.
# S3 method for esreg_twostep
vcov(object, sparsity = "iid", cond_var = "ind",
bandwidth_type = "Hall-Sheather", bootstrap_method = NULL, B = 1000,
block_length = NULL, ...)
An esreg object
Sparsity estimator (default: iid), see density_quantile_function for more details.
iid - Piecewise linear interpolation of the distribution
nid - Hendricks and Koenker sandwich
Conditional truncated variance estimator (default: ind), see conditional_truncated_variance for more details.
ind - Variance over all negative residuals
scl_N - Scaling with the normal distribution
scl_sp - Scaling with the kernel density function
Bofinger, Chamberlain or Hall-Sheather
(default: NULL)
NULL - Use the asymptotic estimator
iid - Apply the iid bootstrap (Efron, 1979)
stationary - Apply the stationary bootstrap (Politis & Romano, 1994)
Number of bootstrap iterations
Average block length for the stationary bootstrap
additional arguments