Learn R Programming

estimatr (version 1.0.6)

Fast Estimators for Design-Based Inference

Description

Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard errors and confidence intervals. Includes estimators for linear regression, instrumental variables regression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision of experimental estimates by interacting treatment with centered pre-treatment covariates introduced by Lin (2013) .

Copy Link

Version

Install

install.packages('estimatr')

Monthly Downloads

15,447

Version

1.0.6

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Graeme Blair

Last Published

February 28th, 2025

Functions in estimatr (1.0.6)

permutations_to_condition_pr_mat

Builds condition probability matrices for Horvitz-Thompson estimation from permutation matrix
reexports

Objects exported from other packages
lh_robust

Linear Hypothesis for Ordinary Least Squares with Robust Standard Errors
starprep

Prepare model fits for stargazer
predict.lm_robust

Predict method for lm_robust object
lm_robust_fit

Internal method that creates linear fits
lm_lin

Linear regression with the Lin (2013) covariate adjustment
iv_robust

Two-Stage Least Squares Instrumental Variables Regression
na.omit_detailed.data.frame

Extra logging on na.omit handler
lm_robust

Ordinary Least Squares with Robust Standard Errors
gen_pr_matrix_cluster

Generate condition probability matrix given clusters and probabilities
estimatr_tidiers

Tidy an estimatr object
declaration_to_condition_pr_mat

Builds condition probability matrices for Horvitz-Thompson estimation from randomizr declaration
difference_in_means

Design-based difference-in-means estimator
estimatr

estimatr
extract.robust_default

Extract model data for texreg package
horvitz_thompson

Horvitz-Thompson estimator for two-armed trials
alo_star_men

Replication data for Lin 2013
commarobust

Build lm_robust object from lm fit
estimatr_glancers

Glance at an estimatr object