Learn R Programming

etable (version 1.3.1)

stat_cell: Diverse statistics cell function

Description

Calculating values of several descriptive statistics.

Usage

stat_cell(x, y, z, w, cell_ids, row_ids, col_ids, vnames, vars, n_min,
       digits = 3, digits2=1)

Arguments

x

The x variable

y

NOT USED

z

NOT USED

w

Weights for x variable.

cell_ids

Index vector for selecting values in cell.

row_ids

NOT USED

col_ids

NOT USED

vnames

NOT USED

vars

A vector of character strings with names of variables in data.frame for x, y and z. Use names of x or y as keywords, to choose a certain statistic.

n_min

Minimum n in the cell for useful calculation. Cells with n<n_min deliver no output.

digits

Integer indicating the number of significant digits.

digits2

Integer indicating the number of decimal places for percentages.

Details

Keywords are:

  • N: number in this cell

  • MIN: minimum

  • MAX: maximum

  • SUM: sum

  • MEAN: mean

  • SD: standard deviation

  • MSD: mean, standard deviation

  • MCI: mean, 95% CI

  • VAR: variance

  • MEDIAN: median

  • MD: mean deviation from the mean (*1.253)

  • MAD: median absolute deviation (*1.4826)

  • IQR: interquartile range

  • MQQ: median (Q1/Q3)

  • PROP: proportion

  • POP: proportion of level 2 (only binar)

  • PCI: proportion of level 2, 95% CI

  • RANGE: range

  • CV: coefficient of variation

  • MODE: mode

  • MISS: number of missing values

  • PNM: proportion of non missing values

  • COMB: POP for binar and MQQ for continues

  • SKEW: skewness

  • KURT: excess kurtosis

  • GEO: geometric mean

  • HARM: harmonic mean

  • TM1: truncated mean 1%

  • TM5: truncated mean 5%

  • TM10: truncated mean 10%

  • TM25: truncated mean 25%

  • WM1: winsorized mean 1%

  • WM5: winsorized mean 5%

  • WM10: winsorized mean 10%

  • WM25: winsorized mean 25%

  • M1SD: mean-SD, mean+SD

  • M2SD: mean-2SD, mean+2SD

  • M3SD: mean-3SD, mean+3SD

  • MM1SD: mean, mean-SD, mean+SD

  • MM2SD: mean, mean-2SD, mean+2SD

  • MM3SD: mean, mean-3SD, mean+3SD

  • NORM50: mean-0.675SD, mean+0.675SD

  • NORM90: mean-1.645SD, mean+1.645SD

  • NORM95: mean-1.96SD, mean+1.96SD

  • NORM99: mean-2.576SD, mean+2.576SD

  • P1: 1th quantile

  • P2.5: 2.5th quantile

  • P5: 5th quantile

  • P10: 10th quantile

  • P20: 20th quantile

  • P25: 25th quantile

  • P30: 30th quantile

  • P40: 40th quantile

  • P50: 50th quantile

  • P60: 60th quantile

  • P70: 70th quantile

  • P75: 75th quantile

  • P80: 80th quantile

  • P90: 90th quantile

  • P95: 95th quantile

  • P97.5: 97.5th quantile

  • P99: 99th quantile

Examples

Run this code
# NOT RUN {

sex     <- factor(rbinom(1000, 1, 0.4),  labels=c('Men', 'Women'))
height  <- rnorm(1000, mean=1.66, sd=0.1)
height[which(sex=='Men')]<-height[which(sex=='Men')]+0.1
weight  <- rnorm(1000, mean=70, sd=5)
decades <- rbinom(1000, 3, 0.5)
decades <- factor(decades, labels=c('[35,45)','[45,55)','[55,65)','[65,75)'))
d<-data.frame(sex, decades, height, weight)


tabular.ade(x_vars=c('height', 'weight'), xname=c('Height [m]','Weight [kg]'),
   y_vars=c('N', 'MEAN', 'SD', 'SKEW', 'KURT'),
   rows=c('sex', 'ALL', 'decades', 'ALL'), rnames=c('Gender', 'Age decades'),
   data=d, FUN=stat_cell)



# }

Run the code above in your browser using DataLab