gpdImAsym: GPD Asymptotic Adjusted Information Matrix (IM) Test
Description
Runs the IM Test using bootstrap estimated covariance matrix. Asymptotically (in sample size) follows the F(3, bootnum - 3)
distribution (see reference for details).
Usage
gpdImAsym(data, bootnum, theta = NULL)
Arguments
data
Data should be in vector form.
bootnum
Number of bootstrap replicates for the covariance estimate.
theta
Estimate for theta in the vector form (scale, shape). If NULL, uses the MLE.
Value
statistic
Test statistic.
p.value
P-value for the test.
theta
Value of theta used in the test.
effective_bootnum
Effective number of bootstrap replicates used for the covariance estimate. If a
replicate fails to converge, it will not be used in the estimation.
References
Dhaene, G., & Hoorelbeke, D. (2004). The information matrix test with bootstrap-based covariance matrix estimation. Economics Letters, 82(3), 341-347.