Learn R Programming

evd (version 1.2-3)

abvnonpar: Non-parametric Estimates for the Dependence Function

Description

Calculate or plot non-parametric estimates for the dependence function of the bivariate extreme value distribution.

Usage

abvnonpar(x = 0.5, data, nsloc1 = NULL, nsloc2 = NULL,
    method = c("cfg", "deheuvels", "pickands"), modify = 0,
    wf = function(t) t, plot = FALSE, add = FALSE, lty = 1, lwd = 1,
    col = 1, blty = 3, xlim = c(0, 1), ylim = c(0.5, 1), xlab = "",
    ylab = "", ...)

Arguments

x
A vector of values at which the dependence function is evaluated (ignored if plot is TRUE).
data
A matrix or data frame with two columns, which may contain missing values.
nsloc1, nsloc2
A data frame with the same number of rows as data, for linear modelling of the location parameter on the first/second margin (see Details). The data frames are treated as covariate matrices, excluding the intercept.
method
The estimation method (see Details).
modify
An integer. Can be used to modify the estimation method (see Details).
wf
The weight function used in the (default) ``cfg'' method (see Details). The function must be vectorized.
plot
Logical; if TRUE the function is plotted and the values used to create the plot are returned invisibly.
add
Logical; add to an existing plot?
lty, blty
Function and border line types. Use zero to suppress.
lwd
Line width.
col
Line colour.
xlim, ylim
x and y-axis limits.
xlab, ylab
x and y-axis labels.
...
Other high-level graphics parameters to be passed to plot.

Value

  • abvnonpar gives a non-parametric estimate of the dependence function.

Details

Any bivariate extreme value distribution can be written as $$G(z_1,z_2) = \exp\left[-(y_1+y_2)A\left( \frac{y_1}{y_1+y_2}\right)\right]$$ for some function $A(\cdot)$ defined on $[0,1]$, where $$y_i = {1+s_i(z_i-a_i)/b_i}^{-1/s_i}$$ for $1 + s_i(z_i-a_i)/b_i > 0$ and $i = 1,2$, with the (generalized extreme value) marginal parameters given by $(a_i,b_i,s_i)$, $b_i > 0$.

$A(\cdot)$ is called (by some authors) the dependence function. It follows that $A(0) = A(1) = 1$, and that $A(\cdot)$ is a convex function with $\max(w,1-w) \leq A(w)\leq 1$ for all $0\leq w\leq1$. $A(\cdot)$ does not depend on the marginal parameters.

Suppose $(z_{i1},z_{i2})$ for $i=1,\ldots,n$ are $n$ bivariate observations that are passed using the data argument. The marginal parameters are estimated (under the assumption of independence) and the data is transformed using $$y_{i1} = {1+\hat{s}_1(z_{i1}-\hat{a}_1)/ \hat{b}_1}_{+}^{-1/\hat{s}_1}$$ and $$y_{i2} = {1+\hat{s}_2(z_{i2}-\hat{a}_2)/ \hat{b}_2}_{+}^{-1/\hat{s}_2}$$ for $i = 1,\ldots,n$, where $(\hat{a}_1,\hat{b}_1,\hat{s}_1)$ and $(\hat{a}_2,\hat{b}_2,\hat{s}_2)$ are the maximum likelihood estimates for the location, scale and shape parameters on the first and second margins. If nsloc1 or nsloc2 are given, the location parameters may depend on $i$ (see fgev for details).

Three different estimators of the dependence function can be implemented. They are defined (on $0 \leq w \leq 1$) as follows.

method = "pickands" (Pickands, 1981) $$A_p(w) = n\left{\sum_{i=1}^n \min\left(\frac{y_{i1}}{w}, \frac{y_{i2}}{1-w}\right)\right}^{-1}$$

method = "deheuvels" (Deheuvels, 1991) $$A_d(w) = n\left{\sum_{i=1}^n \min\left(\frac{y_{i1}}{w}, \frac{y_{i2}}{1-w}\right) - w\sum_{i=1}^n y_{i1} - (1-w) \sum_{i=1}^n y_{i2} + n\right}^{-1}$$

method = "cfg"; The Default Method (Caperaa, Fougeres and Genest, 1997) $$A_c(w) = \exp\left{ {1-p(w)} \int_{0}^{w} \frac{H(x) - x}{x(1-x)} \, \mbox{d}x - p(w) \int_{w}^{1} \frac{H(x) - x}{x(1-x)} \, \mbox{d}x \right}$$

In the estimator $A_c(\cdot)$, $H(x)$ is the empirical distribution function of $x_1,\ldots,x_n$, where $x_i = y_{i2} / (y_{i1} + y_{i2})$ for $i = 1,\ldots,n$, and $p(w)$ is any bounded function on $[0,1]$, which can be specified using the argument wf. By default wf is the identity function.

Let $A_n(\cdot)$ be any estimator of $A(\cdot)$. The estimator $A_d(\cdot)$ satisfies $A_n(0) = A_n(1) = 1$. $A_c(\cdot)$ satisfies this constraint when $p(0) = 0$ and $p(1) = 1$.

None of the estimators satisfy $\max(w,1-w) \leq A_n(w) \leq 1$ for all $0\leq w \leq1$. An obvious modification is $$A_n^{'}(w) = \min(1, \max{A_n(w), w, 1-w}).$$

Another estimator $A_n^{''}(w)$ can be derived by taking the convex hull of $A_n^{'}(w)$. These modifications can be implemented using the modify argument. Set $\code{modify} = 1$ to plot or calculate $A_n^{'}(w)$. Set $\code{modify} = 2$ to plot or calculate $A_n^{''}(w)$.

$A_n(1/2)$ is returned by default since it is often a useful summary of dependence.

References

Caperaa, P. Fougeres, A.-L. and Genest, C. (1997) A non-parametric estimation procedure for bivariate extreme value copulas. Biometrika, 84, 567--577.

Deheuvels, P. (1991) On the limiting behaviour of the Pickands estimator for bivariate extreme-value distributions. Statist. Probab. Letters, 12, 429--439.

Pickands, J. (1981) Multivariate extreme value distributions. Proc. 43rd Sess. Int. Statist. Inst., 49, 859--878.

See Also

abvlog, bvdp, fbvlog, fgev

Examples

Run this code
bvdata <- rbvlog(100, dep = 0.7)
abvnonpar(seq(0, 1, length = 10), data = bvdata, modify = 2)
abvnonpar(data = bvdata, method = "d", plot = TRUE)

Run the code above in your browser using DataLab