Learn R Programming

evolqg (version 0.3-4)

BootstrapRep: Bootstrap analysis via resampling

Description

Calculates the repeatability of the covariance matrix of the supplied data via bootstrap resampling

Usage

BootstrapRep(
  ind.data,
  ComparisonFunc,
  iterations = 1000,
  sample.size = dim(ind.data)[1],
  correlation = FALSE,
  parallel = FALSE
)

Value

returns the mean repeatability, that is, the mean value of comparisons from samples to original statistic.

Arguments

ind.data

Matrix of residuals or individual measurements

ComparisonFunc

comparison function

iterations

Number of resamples to take

sample.size

Size of resamples, default is the same size as ind.data

correlation

If TRUE, correlation matrix is used, else covariance matrix.

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Author

Diogo Melo, Guilherme Garcia

Details

Samples with replacement are taken from the full population, a statistic calculated and compared to the full population statistic.

See Also

MonteCarloStat, AlphaRep

Examples

Run this code
BootstrapRep(iris[,1:4], MantelCor, iterations = 5, correlation = TRUE)
             
BootstrapRep(iris[,1:4], RandomSkewers, iterations = 50)

BootstrapRep(iris[,1:4], KrzCor, iterations = 50, correlation = TRUE)

BootstrapRep(iris[,1:4], PCAsimilarity, iterations = 50)

#Multiple threads can be used with some foreach backend library, like doMC or doParallel
#library(doParallel)
##Windows:
#cl <- makeCluster(2)
#registerDoParallel(cl)
##Mac and Linux:
#registerDoParallel(cores = 2)
#BootstrapRep(iris[,1:4], PCAsimilarity,
#             iterations = 5,
#             parallel = TRUE)

Run the code above in your browser using DataLab