Learn R Programming

evolqg (version 0.3-4)

CalcR2CvCorrected: Corrected integration value

Description

Calculates the Young correction for integration, using bootstrap resampling Warning: CalcEigenVar is strongly preferred and should probably be used in place of this function..

Usage

CalcR2CvCorrected(ind.data, ...)

# S3 method for default CalcR2CvCorrected( ind.data, cv.level = 0.06, iterations = 1000, parallel = FALSE, ... )

# S3 method for lm CalcR2CvCorrected(ind.data, cv.level = 0.06, iterations = 1000, ...)

Value

List with adjusted integration indexes, fitted models and simulated distributions of integration indexes and mean coefficient of variation.

Arguments

ind.data

Matrix of individual measurments, or adjusted linear model

...

additional arguments passed to other methods

cv.level

Coefficient of variation level chosen for integration index adjustment in linear model. Defaults to 0.06.

iterations

Number of resamples to take

parallel

if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC.

Author

Diogo Melo, Guilherme Garcia

References

Young, N. M., Wagner, G. P., and Hallgrimsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3400-5. doi:10.1073/pnas.0911856107

See Also

MeanMatrixStatistics, CalcR2

Examples

Run this code
if (FALSE) {
integration.dist = CalcR2CvCorrected(iris[,1:4])

#adjusted values
integration.dist[[1]]

#ploting models
library(ggplot2)
ggplot(integration.dist$dist, aes(r2, mean_cv)) + geom_point() +
       geom_smooth(method = 'lm', color= 'black') + theme_bw()

ggplot(integration.dist$dist, aes(eVals_cv, mean_cv)) + geom_point() +
       geom_smooth(method = 'lm', color= 'black') + theme_bw()
}

Run the code above in your browser using DataLab