Learn R Programming

evolqg (version 0.3-4)

MonteCarloStat: Parametric population samples with covariance or correlation matrices

Description

Using a multivariate normal model, random populations are generated using the supplied covariance matrix. A statistic is calculated on the random population and compared to the statistic calculated on the original matrix.

Usage

MonteCarloStat(
  cov.matrix,
  sample.size,
  iterations,
  ComparisonFunc,
  StatFunc,
  parallel = FALSE
)

Value

returns the mean repeatability, or mean value of comparisons from samples to original statistic.

Arguments

cov.matrix

Covariance matrix.

sample.size

Size of the random populations

iterations

Number of random populations

ComparisonFunc

Comparison functions for the calculated statistic

StatFunc

Function for calculating the statistic

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Author

Diogo Melo, Guilherme Garcia

Details

Since this function uses multivariate normal model to generate populations, only covariance matrices should be used.

See Also

BootstrapRep, AlphaRep

Examples

Run this code
cov.matrix <- RandomMatrix(5, 1, 1, 10)

MonteCarloStat(cov.matrix, sample.size = 30, iterations = 50,
               ComparisonFunc = function(x, y) PCAsimilarity(x, y)[1],
               StatFunc = cov)

#Calculating R2 confidence intervals
r2.dist <- MonteCarloR2(RandomMatrix(10, 1, 1, 10), 30)
quantile(r2.dist)

if (FALSE) {
#Multiple threads can be used with some foreach backend library, like doMC or doParallel
##Windows:
#cl <- makeCluster(2)
#registerDoParallel(cl)

##Mac and Linux:
library(doParallel)
registerDoParallel(cores = 2)

MonteCarloStat(cov.matrix, sample.size = 30, iterations = 100,
               ComparisonFunc = function(x, y) KrzCor(x, y)[1],
               StatFunc = cov,
               parallel = TRUE)
}

Run the code above in your browser using DataLab