Learn R Programming

evolqg (version 0.3-4)

PCAsimilarity: Compare matrices using PCA similarity factor

Description

Compare matrices using PCA similarity factor

Usage

PCAsimilarity(cov.x, cov.y, ...)

# S3 method for default PCAsimilarity(cov.x, cov.y, ret.dim = NULL, ...)

# S3 method for list PCAsimilarity(cov.x, cov.y = NULL, ..., repeat.vector = NULL, parallel = FALSE)

# S3 method for mcmc_sample PCAsimilarity(cov.x, cov.y, ..., parallel = FALSE)

Value

Ratio of projected variance to total variance

Arguments

cov.x

Single covariance matrix or list of covariance matrices. If cov.x is a single matrix, it is compared to cov.y. If cov.x is a list and no cov.y is supplied, all matrices are compared to each other. If cov.x is a list and cov.y is supplied, all matrices in cov.x are compared to cov.y.

cov.y

First argument is compared to cov.y.

...

additional arguments passed to other methods

ret.dim

number of retained dimensions in the comparison. Defaults to all.

repeat.vector

Vector of repeatabilities for correlation correction.

parallel

if TRUE computations are done in parallel. Some foreach back-end must be registered, like doParallel or doMC.

Author

Edgar Zanella Alvarenga

References

Singhal, A. and Seborg, D. E. (2005), Clustering multivariate time-series data. J. Chemometrics, 19: 427-438. doi: 10.1002/cem.945

See Also

KrzProjection,KrzCor,RandomSkewers,MantelCor

Examples

Run this code
c1 <- RandomMatrix(10)
c2 <- RandomMatrix(10)
PCAsimilarity(c1, c2)

m.list <- RandomMatrix(10, 3)
PCAsimilarity(m.list)

PCAsimilarity(m.list, c1)

Run the code above in your browser using DataLab