Learn R Programming

exactLoglinTest (version 1.4.2)

simulateConditional: Simulates from the conditional distribution of a log-linear model

Description

Simulates from the conditional distribution of log-linear models given the sufficient statistics.

Usage

simulateConditional(formula, data, dens = hyper, nosim = 10^3, method = "bab", tdf = 3, maxiter = nosim, p = NULL, y.start = NULL) simtable.bab(args, nosim = NULL, maxiter = NULL) simtable.cab(args, nosim = NULL, p = NULL, y.start = NULL)

Arguments

formula
A formula for the log-linear model
data
A data frame
dens
The target density on the log scale up to a constant of proportionallity. A function of the form function(y). Current default is (proportional to) the log of the generalized hypergeometric density.
nosim
Desired number of simulations.
method
Possibly two values, the importance sampling method of Booth and Butler, method = "bab" or the MCMC approach of Caffo and Booth method = "cab".
tdf
A tuning parameter
maxiter
For method = "bab" number of iterations is different from the number of simulations. maxiter is a bound on the total number of iterations.
p
A tuning parameter for method = "cab".
y.start
An optional starting value when method = "cab"
args
An object of class "bab" or "cab"

Value

A matrix where each simulated table is a row.

See Also

fisher.test

Examples

Run this code
data(czech.dat)
chain2 <- simulateConditional(y ~ (A + B + C + D + E + F) ^ 2,
                               data = czech.dat,
                               method = "cab",
                               nosim = 10 ^ 3,
                               p = .4,
                               dens = function(y) 0)

Run the code above in your browser using DataLab