Learn R Programming

expert (version 1.0-0)

cdf: Expert Aggregated Cumulative Distribution Function

Description

Compute or plot the cumulative distribution function for objects of class "expert".

Usage

cdf(x, ...)
"print"(x, digits = getOption("digits") - 2, ...)
"knots"(Fn, ...)
"plot"(x, ..., ylab = "F(x)", verticals = FALSE, col.01line = "gray70")

Arguments

x
an object of class "expert"; for the methods, an object of class "cdf", typically.
digits
number of significant digits to use, see print.
Fn
an R object inheriting from "cdf".
...
arguments to be passed to subsequent methods, e.g. plot.stepfun for the plot method.
ylab
label for the y axis.
verticals
col.01line
numeric or character specifying the color of the horizontal lines at y = 0 and 1, see colors.

Value

For cdf, a function of class "cdf", inheriting from the "function" class.

Details

The function builds the expert aggregated cumulative distribution function corresponding to the results of expert.

The function plot.cdf which implements the plot method for cdf objects, is implemented via a call to plot.stepfun; see its documentation.

See Also

expert to create objects of class "expert"; ogive for the linear interpolation; ecdf and stepfun for related documentation.

Examples

Run this code
x <- list(E1 <- list(A1 <- c(0.14, 0.22, 0.28),
                     A2 <- c(130000, 150000, 200000),
                     X <- c(350000, 400000, 525000)),
          E2 <- list(A1 <- c(0.2, 0.3, 0.4),
                     A2 <- c(165000, 205000, 250000),
                     X <- c(550000, 600000, 650000)),
          E3 <- list(A1 <- c(0.2, 0.4, 0.52),
                     A2 <- c(200000, 400000, 500000),
                     X <- c(625000, 700000, 800000)))
probs <- c(0.1, 0.5, 0.9)
true.seed <- c(0.27, 210000)
fit <- expert(x, "cooke", probs, true.seed, 0.03)
Fn <- cdf(fit)
Fn
knots(Fn)            # the group boundaries

Fn(knots(Fn))        # true values of the cdf

plot(Fn)             # graphic

Run the code above in your browser using DataLab