Learn R Programming

expert (version 1.0-0)

mean.expert: Arithmetic Mean of the Expert Aggregated Distribution

Description

Mean of objects of class "expert".

Usage

"mean"(x, ...)

Arguments

x
an object of class "expert".
...
further arguments passed to or from other methods.

Value

A numeric value.

Details

The mean of a distribution with probabilities $p[1], \dots, p[r]$ on intervals defined by the boundaries $c[1], \dots, c[r]$ is $$\sum_{j = 1}^r \frac{c_{j - 1} + c_j}{2}\, p_j.$$

References

Klugman, S. A., Panjer, H. H. and Willmot, G. E. (1998), Loss Models, From Data to Decisions, Wiley.

See Also

expert to create objects of class "expert"

Examples

Run this code
x <- list(E1 <- list(A1 <- c(0.14, 0.22, 0.28),
                     A2 <- c(130000, 150000, 200000),
                     X <- c(350000, 400000, 525000)),
          E2 <- list(A1 <- c(0.2, 0.3, 0.4),
                     A2 <- c(165000, 205000, 250000),
                     X <- c(550000, 600000, 650000)),
          E3 <- list(A1 <- c(0.2, 0.4, 0.52),
                     A2 <- c(200000, 400000, 500000),
                     X <- c(625000, 700000, 800000)))
probs <- c(0.1, 0.5, 0.9)
true.seed <- c(0.27, 210000)
fit <- expert(x, "cooke", probs, true.seed, 0.03)
mean(fit)

Run the code above in your browser using DataLab