kimber.exp.test: Kimber-Michael test for exponentiality
Description
Performs Kimber-Michael test for the composite hypothesis of exponentiality,
see e.g. Michael (1983), Kimber (1985).
Usage
kimber.exp.test(x, nrepl=2000)
Arguments
x
a numeric vector of data values.
nrepl
the number of replications in Monte Carlo simulation.
Value
A list with class "htest" containing the following components:
statisticthe value of the Kimber-Michael statistic.
p.valuethe p-value for the test.
methodthe character string "Kimber-Michael test for exponentiality".
data.namea character string giving the name(s) of the data.
Details
The Kimber-Michael test for exponentiality is based on the following statistic:
$$D = \max_i{\left| r_i - s_i\right|},$$
where
$$s_i = \frac{2}{\pi} \, \arcsin{\sqrt{1-\exp(-X_{(i)}/\overline{X})}}, \qquad r_i = \frac{2}{\pi} \, \arcsin{\sqrt{(i - 0.5)/n}}.$$
The p-value is computed by Monte Carlo simulation.
References
Kimber, A.C. (1985): Tests for the exponential, Weibull and Gumbel distributions based on the stabilized probability plot. --- Biometrika, vol. 72, pp. 661--663.
Michael, J.R. (1983): The stabilized probability plot. --- Biometrika, vol. 70, pp. 11--17.