The tail dependence functions are those described in, e.g., Reiss and Thomas (2007) Eq (2.60) for "chi" and Eq (13.25) "chibar", and estimated by Eq (2.62) and Eq (13.28), resp. See also, Sibuya (1960) and Coles (2001) sec. 8.4, as well as other texts on EVT such as Beirlant et al. (2004) sec. 9.4.1 and 10.3.4 and de Haan and Ferreira (2006).
Specifically, for two series X and Y with associated df's F and G, chi, a function of u, is defined as
chi(u) = Pr[Y > G^(-1)(u) | X > F^(-1)(u)] = Pr[V > u | U > u],
where (U,V) = (F(X),G(Y))--i.e., the copula. Define chi = limit as u goes to 1 of chi(u).
The coefficient of tail dependence, chibar(u) was introduced by Coles et al. (1999), and is given by
chibar(u) = 2*log(Pr[U > u])/log(Pr[U > u, V > u]) - 1.
Define chibar = limit as u goes to 1 of chibar(u).
The auto-tail dependence function using chi(u) and/or chibar(u) employs X against itself at different lags.
The associated estimators for the auto-tail dependence functions employed by these functions are based on the above two coefficients of tail dependence, and are given by Reiss and Thomas (2007) Eq (2.65) and (13.28) for a lag h as
rho.hat(u, h) = sum(min(x_i, x_i+h) > sort(x)[floor(n*u)])/(n*(1-u)) [based on chi]
and
rhobar.hat(u, h) = 2*log(1 - u)/log(sum(min(x_i,x_i+h) > sort(x)[floor(n*u)])/(n - h)) - 1.
Some properties of the above dependence coefficients, chi(u), chi, and chibar(u) and chibar, are that 0 <= chi(u), chi <= 1, where if X and Y are stochastically independent, then chi(u) = 1 - u, and chibar = 0. If X = Y (perfectly dependent), then chi(u) = chi = 1. For chibar(u) and chibar, we have that -1 <= chibar(u), chibar <= 1. If U = V, then chibar = 1. If chi = 0, then chibar < 1 (tail independence with chibar determining the degree of dependence).