Learn R Programming

extraDistr (version 1.10.0)

DirMnom: Dirichlet-multinomial (multivariate Polya) distribution

Description

Density function, cumulative distribution function and random generation for the Dirichlet-multinomial (multivariate Polya) distribution.

Usage

ddirmnom(x, size, alpha, log = FALSE)

rdirmnom(n, size, alpha)

Arguments

x

\(k\)-column matrix of quantiles.

size

numeric vector; number of trials (zero or more).

alpha

\(k\)-values vector or \(k\)-column matrix; concentration parameter. Must be positive.

log

logical; if TRUE, probabilities p are given as log(p).

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

If \((p_1,\dots,p_k) \sim \mathrm{Dirichlet}(\alpha_1,\dots,\alpha_k)\) and \((x_1,\dots,x_k) \sim \mathrm{Multinomial}(n, p_1,\dots,p_k)\), then \((x_1,\dots,x_k) \sim \mathrm{DirichletMultinomial(n, \alpha_1,\dots,\alpha_k)}\).

Probability density function $$ f(x) = \frac{\left(n!\right)\Gamma\left(\sum \alpha_k\right)}{\Gamma\left(n+\sum \alpha_k\right)}\prod_{k=1}^K\frac{\Gamma(x_{k}+\alpha_{k})}{\left(x_{k}!\right)\Gamma(\alpha_{k})} $$

References

Gentle, J.E. (2006). Random number generation and Monte Carlo methods. Springer.

Kvam, P. and Day, D. (2001) The multivariate Polya distribution in combat modeling. Naval Research Logistics, 48, 1-17.

See Also

Dirichlet, Multinomial