This parameterization of the beta-binomial distribution uses an expected
probability parameter, prob
, and a dispersion parameter, theta
. The
parameters of the underlying beta mixture are alpha = (2 * prob) / theta
and beta = (2 * (1 - prob)) / theta
. This parameterization of theta
is
unconventional, but has useful properties when modelling. When theta = 0
,
the beta-binomial reverts to the binomial distribution. When theta = 1
and
prob = 0.5
, the parameters of the beta distribution become alpha = 1
and
beta = 1
, which correspond to a uniform distribution for the beta-binomial
probability parameter.
log_lik_beta_binom(x, size = 1, prob = 0.5, theta = 0, memoize = FALSE)
An numeric vector of the corresponding log-likelihoods.
A non-negative whole numeric vector of values.
A non-negative whole numeric vector of the number of trials.
A numeric vector of values between 0 and 1 of the probability of success.
A non-negative numeric vector of the dispersion for the mixture models (student, gamma-Poisson and beta-binomial).
Whether or not to memoize the function.
Other log_lik_dist:
log_lik_bern()
,
log_lik_binom()
,
log_lik_gamma()
,
log_lik_gamma_pois()
,
log_lik_gamma_pois_zi()
,
log_lik_lnorm()
,
log_lik_neg_binom()
,
log_lik_norm()
,
log_lik_pois()
,
log_lik_pois_zi()
,
log_lik_skewnorm()
,
log_lik_student()
log_lik_beta_binom(c(0, 1, 2), 3, 0.5, 0)
Run the code above in your browser using DataLab