Determine outlier limit. These functions are called by the
wrapper function getOutliersII
Usage
qqExponentialLimit(y, p, iLambda, alpha)
qqLognormalLimit(y, p , iLambda, alpha)
qqParetoLimit(y, p , iLambda, alpha)
qqWeibullLimit(y, p , iLambda, alpha)
qqNormalLimit(y, p , iLambda, alpha)
Value
limit
The residual-values corresponding to the confidence values
R2
R-squared value for the fit
lamda
(exponential only) Estimated location (and spread) parameter for \(f(y)=\lambda\exp(-\lambda y)\)
mu
(lognormal only) Estimated \({\sf E}(\ln(y))\) for lognormal distribution
sigma
(lognormal only) Estimated Var(ln(y)) for lognormal distribution
ym
(pareto only) Estimated location parameter (mode) for pareto distribution
alpha
(pareto only) Estimated spread parameter for pareto distribution
k
(weibull only) estimated power parameter \(k\) for weibull distribution
lambda
(weibull only) estimated scaling parameter \(\lambda\) for weibull distribution
Arguments
y
Vector of real numbers
p
Corresponding quantile values
Author
Mark van der Loo, see www.markvanderloo.eu
Details
The functions fit a model cdf to the observed y and p and returns the
confidence limits for the fit residuals.
References
M.P.J. van der Loo, Distribution based outlier detection for univariate
data. Discussion paper 10003, Statistics Netherlands, The Hague (2010).
Available from www.markvanderloo.eu or www.cbs.nl.