########
# Set up some fake data
########
library(MASS)
N=100
#first pair of variables
variance1=1
variance2=2
mean1=10
mean2=20
rho = .8
Sigma=matrix(
c(
variance1
, sqrt(variance1*variance2)*rho
, sqrt(variance1*variance2)*rho
, variance2
)
, 2
, 2
)
pair1=mvrnorm(N,c(mean1,mean2),Sigma,empirical=TRUE)
#second pair of variables
variance1=10
variance2=20
mean1=100
mean2=200
rho = -.4
Sigma=matrix(
c(
variance1
, sqrt(variance1*variance2)*rho
, sqrt(variance1*variance2)*rho
, variance2
)
, 2
, 2
)
pair2=mvrnorm(N,c(mean1,mean2),Sigma,empirical=TRUE)
my_data=data.frame(cbind(pair1,pair2))
########
# Now plot
########
p = ezCor(
data = my_data
)
print(p)
#you can modify the default colours of the
##correlation coefficients as follows
library(ggplot2)
p = p + scale_colour_manual(values = c('red','blue'))
print(p)
#see the following for alternatives:
# http://had.co.nz/ggplot2/scale_manual.html
# http://had.co.nz/ggplot2/scale_hue.html
# http://had.co.nz/ggplot2/scale_brewer.html
Run the code above in your browser using DataLab