nFit
MLE parameter fit for a normal distribution,
tFit
MLE parameter fit for a Student t-distribution,
stableFit
MLE and Quantile Method stable parameter fit. }nFit(x, doplot = TRUE, span = "auto", title = NULL, description = NULL, ...)
tFit(x, df = 4, doplot = TRUE, span = "auto", trace = FALSE, title = NULL,
description = NULL, ...)
stableFit(x, alpha = 1.75, beta = 0, gamma = 1, delta = 0,
type = c("q", "mle"), doplot = TRUE, trace = FALSE, title = NULL,
description = NULL)
## S3 method for class 'fDISTFIT':
show(object)
alpha
, beta
, gamma
,
and delta
:
value of the index parameter alpha
with alpha = (0,2]
;
skewness parameter beta
, in thdf > 2
, maybe non-integer. By default a value of 4 is
assumed.span=seq(min, max,
times =
"mle"
, the maximum log likelihood
approach, or "qm"
, McCulloch's quantile method.tFit
, hypFit
and nigFit
return
a list with the following components:estimate
.
Either estimate
is an approximate local minimum of the
function or steptol
is too small;
4: iteration limit exceeded;
5: maximum step size stepmax
exceeded five consecutive times.
Either the function is unbounded below, becomes asymptotic to a
finite value from above in some direction or stepmax
is too small.alpha
and beta
without asymptotic bias. Unfortunately, the estimators provided by
McCulloch have restriction alpha>0.6
.## nFit -
# Simulate random normal variates N(0.5, 2.0):
set.seed(1953)
s = rnorm(n = 1000, 0.5, 2)
## nigFit -
# Fit Parameters:
nFit(s, doplot = TRUE)
Run the code above in your browser using DataLab