dght(x, beta = 0.1, delta = 1, mu = 0, nu = 10)
pght(q, beta = 0.1, delta = 1, mu = 0, nu = 10)
qght(p, beta = 0.1, delta = 1, mu = 0, nu = 10)
rght(n, beta = 0.1, delta = 1, mu = 0, nu = 10)beta, abs(beta) is in the
range (0, alpha);
scale parameter delta, delta must be zero or
positive;
location parameter mu, by default 0.
*ght functions are numeric vectors:
d* returns the density,
p* returns the distribution function,
q* returns the quantile function, and
r* generates random deviates.
All values have attributes named "param" listing
the values of the distributional parameters.Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401--419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700--707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.