Learn R Programming

fBasics (version 290.75)

hypMode: Hyperbolic Mode

Description

Computes the mode of the hyperbolic function.

Usage

hypMode(alpha = 1, beta = 0, delta = 1, mu = 0, pm = c(1, 2, 3, 4))

Arguments

alpha, beta, delta, mu
shape parameter alpha; skewness parameter beta, abs(beta) is in the range (0, alpha); scale parameter delta, delta must be zero or positive; locati
pm
an integer value between 1 and 4 for the selection of the parameterization. The default takes the first parameterization.

Value

  • returns the mode in the appropriate parameterization for the hyperbolic distribution. A numeric value.

References

Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502--515.

Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401--419.

Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700--707. New York: Wiley.

Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.

Examples

Run this code
## hypMode -
   hypMode()

Run the code above in your browser using DataLab