Learn R Programming

fBasics (version 4021.93)

ght: Generalized Hyperbolic Student-t

Description

Density, distribution function, quantile function and random generation for the hyperbolic distribution.

Usage

dght(x, beta = 0.1, delta = 1, mu = 0, nu = 10, log = FALSE)
pght(q, beta = 0.1, delta = 1, mu = 0, nu = 10)
qght(p, beta = 0.1, delta = 1, mu = 0, nu = 10)
rght(n, beta = 0.1, delta = 1, mu = 0, nu = 10)

Value

All values for the *ght functions are numeric vectors:

d* returns the density,

p* returns the distribution function,

q* returns the quantile function, and

r* generates random deviates.

All values have attributes named "param" listing the values of the distributional parameters.

Arguments

beta, delta, mu

numeric values. beta is the skewness parameter in the range (0, alpha); delta is the scale parameter, must be zero or positive; mu is the location parameter, by default 0. These are the parameters in the first parameterization.

nu

a numeric value, the number of degrees of freedom. Note, alpha takes the limit of abs(beta), and lambda=-nu/2.

x, q

a numeric vector of quantiles.

p

a numeric vector of probabilities.

n

number of observations.

log

a logical, if TRUE, probabilities p are given as log(p).

References

Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502--515.

Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401--419.

Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700--707. New York: Wiley.

Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.

Examples

Run this code
## ght -
   #

Run the code above in your browser using DataLab