Estimates the distrinbutional parameters for a generalized lambda distribution.
gldFit(x, lambda1 = 0, lambda2 = -1, lambda3 = -1/8, lambda4 = -1/8,
method = c("mle", "mps", "gof", "hist", "rob"),
scale = NA, doplot = TRUE, add = FALSE, span = "auto", trace = TRUE,
title = NULL, description = NULL, ...)
an object from class "fDISTFIT"
.
Slot fit
is a list with the following components:
the point at which the maximum value of the log liklihood function is obtained.
the value of the estimated maximum, i.e. the value of the log liklihood function.
an integer indicating why the optimization process terminated.
1: relative gradient is close to zero, current iterate is probably
solution;
2: successive iterates within tolerance, current iterate is probably
solution;
3: last global step failed to locate a point lower than estimate
.
Either estimate
is an approximate local minimum of the
function or steptol
is too small;
4: iteration limit exceeded;
5: maximum step size stepmax
exceeded five consecutive times.
Either the function is unbounded below, becomes asymptotic to a
finite value from above in some direction or stepmax
is too small.
the gradient at the estimated maximum.
number of function calls.
a numeric vector.
are numeric values where
lambda1
is the location parameter,
lambda2
is the location parameter,
lambda3
is the first shape parameter, and
lambda4
is the second shape parameter.
a character string, the estimation approach to fit the distributional parameters, see details.
not used.
a logical flag. Should a plot be displayed?
a logical flag. Should a new fit added to an existing plot?
x-coordinates for the plot, by default 100 values
automatically selected and ranging between the 0.001,
and 0.999 quantiles. Alternatively, you can specify
the range by an expression like span=seq(min, max,
times = n)
, where, min
and max
are the
left and rigldt endpoints of the range, and n
gives
the number of the intermediate points.
a logical flag. Should the parameter estimation process be traced?
a character string which allows for a project title.
a character string which allows for a brief description.
parameters to be parsed.
The function nlminb
is used to minimize the objective
function. The following approaches have been implemented:
"mle"
, maximimum log likelihoo estimation.
"mps"
, maximum product spacing estimation.
"gof"
, goodness of fit approaches,
type="ad"
Anderson-Darling,
type="cvm"
Cramer-vonMise,
type="ks"
Kolmogorov-Smirnov.
"hist"
, histogram binning approaches,
"fd"
Freedman-Diaconis binning,
"scott"
, Scott histogram binning,
"sturges"
, Sturges histogram binning.
"rob"
, robust moment matching.
## gldFit -
# Simulate Random Variates:
set.seed(1953)
s = rgld(n = 1000, lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8)
## gldFit -
# Fit Parameters:
gldFit(s, lambda1=0, lambda2=-1, lambda3=-1/8, lambda4=-1/8,
doplot = TRUE, trace = TRUE)
Run the code above in your browser using DataLab