Learn R Programming

fBasics (version 4021.93)

ssd: Spline Smoothed Distribution

Description

Density, distribution function, quantile function and random generation from smoothing spline estimates.

Usage

dssd(x, param, log = FALSE)
pssd(q, param)
qssd(p, param)
rssd(n, param)

Value

All values for the *ssd functions are numeric vectors:

d* returns the density,

p* returns the distribution function,

q* returns the quantile function, and

r* generates random deviates.

All values have attributes named "param" listing the values of the distributional parameters.

Arguments

param

an object as returned by the function ssdFit..

log

a logical flag by default FALSE. Should labels and a main title drawn to the plot?

n

number of observations.

p

a numeric vector of probabilities.

x, q

a numeric vector of quantiles.

Author

Diethelm Wuertz, Chong Gu for the underlying gss package.

References

Gu, C. (2002), Smoothing Spline ANOVA Models, New York Springer--Verlag.

Gu, C. and Wang, J. (2003), Penalized likelihood density estimation: Direct cross-validation and scalable approximation, Statistica Sinica, 13, 811--826.

Examples

Run this code
## ssdFit -
   set.seed(1953)
   r = rnorm(500)
   hist(r, breaks = "FD", probability = TRUE,
     col = "steelblue", border = "white")
 
## ssdFit - 
   param = ssdFit(r)
   
## dssd -  
   u = seq(min(r), max(r), len = 301)
   v = dssd(u, param)
   lines(u, v, col = "orange", lwd = 2)

Run the code above in your browser using DataLab