Learn R Programming

fBasics (version 4032.96)

snig: Standardized Normal Inverse Gaussian Distribution

Description

Density, distribution function, quantile function and random generation for the standardized normal inverse Gaussian distribution.

Usage

dsnig(x, zeta = 1, rho = 0, log = FALSE)
psnig(q, zeta = 1, rho = 0)
qsnig(p, zeta = 1, rho = 0)
rsnig(n, zeta = 1, rho = 0)

Value

numeric vector

Arguments

x, q

a numeric vector of quantiles.

p

a numeric vector of probabilities.

n

number of observations.

zeta

shape parameter zeta is positive.

rho

skewness parameter, a number in the range \((-1, 1)\).

log

a logical flag by default FALSE. If TRUE, log values are returned.

Author

Diethelm Wuertz

Details

dsnig gives the density, psnig gives the distribution function, qsnig gives the quantile function, and rsnig generates random deviates.

The random deviates are calculated with the method described by Raible (2000).

Examples

Run this code
## snig -
   set.seed(1953)
   r = rsnig(5000, zeta = 1, rho = 0.5)
   plot(r, type = "l", col = "steelblue",
     main = "snig: zeta=1 rho=0.5")
 
## snig - 
   # Plot empirical density and compare with true density:
   hist(r, n = 50, probability = TRUE, border = "white", col = "steelblue")
   x = seq(-5, 5, length = 501)
   lines(x, dsnig(x, zeta = 1, rho = 0.5))
 
## snig -  
   # Plot df and compare with true df:
   plot(sort(r), (1:5000/5000), main = "Probability", col = "steelblue")
   lines(x, psnig(x, zeta = 1, rho = 0.5))
   
## snig -
   # Compute Quantiles:
   qsnig(psnig(seq(-5, 5, 1), zeta = 1, rho = 0.5), zeta = 1, rho = 0.5) 

Run the code above in your browser using DataLab