Learn R Programming

fBasics (version 4041.97)

ghRobMoments: Robust Moments for the GH

Description

Computes the first four robust moments for the generalized hyperbolic distribution.

Usage

ghMED(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
ghIQR(alpha= 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
ghSKEW(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
ghKURT(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)

Value

a named numerical value. The name is one of MED, IQR, SKEW, or KURT, obtained by dropping the gh prefix from the name of the corresponding function.

Arguments

alpha

first shape parameter.

beta

second shape parameter, should in the range (0, alpha).

delta

scale parameter, must be zero or positive.

mu

location parameter, by default 0.

lambda

defines the sublclass, by default \(-1/2\).

Author

Diethelm Wuertz.

Details

The meanings of the parameters correspond to the first parameterization, see gh for further details.

Examples

Run this code
## ghMED -
   # Median:
   ghMED(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)

## ghIQR -
   # Inter-quartile Range:
   ghIQR(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)

## ghSKEW -
   # Robust Skewness:
   ghSKEW(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)

## ghKURT -
   # Robust Kurtosis:
   ghKURT(alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)

Run the code above in your browser using DataLab