Density, distribution function, quantile function and random generation for the generalized hyperbolic Student-t distribution.
dght(x, beta = 0.1, delta = 1, mu = 0, nu = 10, log = FALSE)
pght(q, beta = 0.1, delta = 1, mu = 0, nu = 10)
qght(p, beta = 0.1, delta = 1, mu = 0, nu = 10)
rght(n, beta = 0.1, delta = 1, mu = 0, nu = 10)
numeric vector
a numeric vector of quantiles.
a numeric vector of probabilities.
number of observations.
numeric value, the skewness parameter in the range (0, alpha)
.
numeric value, the scale parameter, must be zero or positive.
numeric value, the location parameter, by default 0.
a numeric value, the number of degrees of freedom. Note,
alpha
takes the limit of abs(beta)
, and lambda=-nu/2
.
a logical, if TRUE, probabilities p
are given as log(p)
.
dght
gives the density,
pght
gives the distribution function,
qght
gives the quantile function, and
rght
generates random deviates.
The parameters are as in the first parameterization.
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502--515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401--419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700--707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.