Computes the mode of the hyperbolic distribution.
hypMode(alpha = 1, beta = 0, delta = 1, mu = 0, pm = 1)
a numeric value, the mode in the appropriate parameterization for the hyperbolic distribution.
shape parameter, a positive number. alpha
can also be a
vector of length four, containing alpha
, beta
,
delta
and mu
(in that order).
skewness parameter, abs(beta)
is in the
range (0, alpha)
.
scale parameter, must be zero or positive.
location parameter, by default 0.
an integer value between 1
and 4
for the selection of
the parameterization. The default takes the first parameterization.
David Scott for code implemented from R's contributed package
HyperbolicDist
.
Atkinson, A.C. (1982); The simulation of generalized inverse Gaussian and hyperbolic random variables, SIAM J. Sci. Stat. Comput. 3, 502--515.
Barndorff-Nielsen O. (1977); Exponentially decreasing distributions for the logarithm of particle size, Proc. Roy. Soc. Lond., A353, 401--419.
Barndorff-Nielsen O., Blaesild, P. (1983); Hyperbolic distributions. In Encyclopedia of Statistical Sciences, Eds., Johnson N.L., Kotz S. and Read C.B., Vol. 3, pp. 700--707. New York: Wiley.
Raible S. (2000); Levy Processes in Finance: Theory, Numerics and Empirical Facts, PhD Thesis, University of Freiburg, Germany, 161 pages.